【題目】如圖,在同一直角坐標系中,二次函數y=x2-2x-3的圖象與兩坐標軸分別交于點A點 B和點C,一次函數的圖象與拋物線交于B、C兩點.
(1)將這個二次函數化為的形式為 。
(2)當自變量滿足 時,兩函數的函數值都隨
增大而增大。
(3)當自變量滿足 時,一次函數值大于二次函數值。
(4)當自變量滿足 時,兩個函數的函數值的積小于0。
【答案】(1) ; (2) x>1; (3) 0<x<3;(4) x<-1.
【解析】
(1)y=x2 -2x-3=(x- 1)2-4,
(2)拋物線的對稱軸為直線x=1,則x>1時二次函數的函數值都隨x增大而增大,而一次函數y隨x增大而增大,所以當x> 1時,兩函數的函數值都隨x增大而增大,
(3)當0<x<3時,一次函數值大于二次函數值;
(4)當x<-1時,兩個函數的函數值的積小于0,故答案為y=(x-1)2-4 ; x>1 ; 0<x<3 ;x<-1.
(1)利用配方法把一般式配成頂點式即可;
(2)利用一次函數和二次函數的性質求解;
(3)利用函數圖象,寫出一次函數圖象在二次函數圖象_上方所對應的自變量的范圍即可;
(4) 由于x<-1時,二次函數值為正,一次函數值也負,所以兩個函數的函數值的積小于0.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系 XOY中,對于任意兩點 (
,
)與
(
,
)的“非常距離”,給出如下定義: 若
,則點
與點
的“非常距離”為
;若
,則點
與點
的“非常距離”為
.
例如:點 (1,2),點
(3,5),因為
,所以點
與點
的“非常距離”為
,也就是圖1中線段
Q與線段
Q長度的較大值(點 Q為垂直于 y軸的直線
Q與垂直于 x軸的直線
Q的交點)。
(1)已知點 A(-,0), B為 y軸上的一個動點,①若點 A與點 B的“非常距離”為2,寫出一個滿足條件的點 B的坐標;②直接寫出點 A與點 B的“非常距離”的最小值;
(2)已知 C是直線 上的一個動點,①如圖2,點 D的坐標是(0,1),求點 C與點 D的“非常距離”的最小值及相應的點 C的坐標; ②如圖3, E是以原點 O為圓心,1為半徑的圓上的一個動點,求點 C與點 E的“非常距離”的最小值及相應的點 E和點 C的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規作圖作AB的垂直平分線,交AC于點D,交AB于點E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l的解析式為y=x﹣1,拋物線y=ax2+bx+2經過點A(m,0),B(2,0),D(1,
)三點.
(1)求拋物線的解析式及A點的坐標,并在圖示坐標系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E,延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標x的函數,并求出S的最大值及S最大時點P的坐標;
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關于x軸的對稱點一定在PB所在直線上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中
為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=﹣x+3交x軸于點A,交y軸于點B,頂點為D的拋物線y=﹣
x2+2mx﹣3m經過點A,交x軸于另一點C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點A,C,D的坐標;
(2)動點P在BD上以每秒2個單位長的速度由點B向點D運動,同時動點Q在CA上以每秒3個單位長的速度由點C向點A運動,當其中一個點到達終點停止運動時,另一個點也隨之停止運動,設運動時間為t秒.PQ交線段AD于點E.
①當∠DPE=∠CAD時,求t的值;
②過點E作EM⊥BD,垂足為點M,過點P作PN⊥BD交線段AB或AD于點N,當PN=EM時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB的垂直平分線分別交AB,BC于D,E,AC的垂直平分線分別交AC,BC于F,G.
(1)若△AEG的周長為10,求線段BC的長.
(2)若∠BAC=128°,求∠EAG的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com