【題目】《代數學》中記載,形如x2+10x=39的方程,求正數解的幾何方法是:“如圖1,先構造一個面積為x2的正方形,再以正方形的邊長為一邊向外構造四個面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數解為8-5=3”,小聰按此方法解關于x的方程x2+6x+m=0時,構造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數解為( )
A.6B.3-3C.3
-2D.3
-
科目:初中數學 來源: 題型:
【題目】為建設資源節約型、環境友好型社會,切實做好節能減排工作,我市決定對居民家庭用電實行“階梯電價”.電力公司規定:居民家庭每月用電量在80千瓦時以下(含80千瓦時,1千瓦時俗稱1度/時,實行“基本電價”;當居民家庭月用電量超過80千瓦時,超過部分實行“提高電價”
(1)小張家2017年2月份用電100千瓦時,上繳電費68元;3月份用電120千瓦時,上繳電費88元.求“基本電價”和“提高電價”分別為多少元/千瓦時?
(2)若4月份小張家預計用電130千瓦時,請預算小張家4月份應上繳的電費.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】空間任意選定一點,以點
為端點,作三條互相垂直的射線
,
,
.這三條互相垂直的射線分別稱作
軸、
軸、
軸,統稱為坐標軸,它們的方向分別為
(水平向前),
(水平向右),
(豎直向上)方向,這樣的坐標系稱為空間直角坐標系.將相鄰三個面的面積記為
,
,
,且
的小長方體稱為單位長方體,現將若干個單位長方體在空間直角坐標系內進行碼放,要求碼放時將單位長方體
所在的面與
軸垂直,
所在的面與
軸垂直,
所在的面與
軸垂直,如圖1所示.若將
軸方向表示的量稱為幾何體碼放的排數,
軸方向表示的量稱為幾何體碼放的列數,二軸方向表示的量稱為幾何體碼放的層數;如圖2是由若干個單位長方體在空間直角坐標內碼放的一個幾何體,其中這個幾何體共碼放了
排
列
層,用有序數組記作
,如圖3的幾何體碼放了
排
列
層,用有序數組記作
.這樣我們就可用每一個有序數組
表示一種幾何體的碼放方式.
(1)有序數組所對應的碼放的幾何體是______________;
A.B.
C.
D.
(2)圖4是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數組為(______,_______,_______),組成這個幾何體的單位長方體的個數為____________個.
(3)為了進一步探究有序數組的幾何體的表面積公式
,某同學針對若干個單位長方體進行碼放,制作了下列表格:
幾何體有序數組 | 單位長方體的個數 | 表面上面積為S1的個數 | 表面上面積為S2的個數 | 表面上面積為S3的個數 | 表面積 |
根據以上規律,請直接寫出有序數組的幾何體表面積
的計算公式;(用
,
,
,
,
,
表示)
(4)當,
,
時,對由
個單位長方體碼放的幾何體進行打包,為了節約外包裝材料,我們可以對
個單位長方體碼放的幾何體表面積最小的規律進行探究,請你根據自己探究的結果直接寫出使幾何體表面積最小的有序數組,這個有序數組為(______,_______, ______),此時求出的這個幾何體表面積的大小為____________(縫隙不計)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示,將△ABC沿y軸翻折得到△A1B1C1,再將△A1B1C1繞點O旋轉180°得到△A2B2C2;已知A(﹣1,4),B(﹣2,2),C(0,1)
(1)請依次畫出△A1B1C1和△A2B2C2;
(2)若直線A1B2與一個反比例函數圖象在第一象限交于點A1,試求直線A1B2和這個反比例函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】地下停車場的設計大大緩解了住宅小區停車難的問題,如圖是龍泉某小區的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據規定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數據:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且經過A(1,0),C(0,3)兩點,與x軸的另一個交點為B.
(1)若直線y=mx+n經過B,C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1 上找一點M,使點M到點A的距離與到點C的距離之和最小,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y=(x<0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數的解析式和△AOB的面積.
(3)根據圖象回答:當x為何值時,kx+b≥(請直接寫出答案) .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過
的三個頂點,其中點
,點
,
軸,點
是直線
下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點且與
軸平行的直線
與直線
、
分別交與點
、
,當四邊形
的面積最大時,求點
的坐標;
(3)當點為拋物線的頂點時,在直線
上是否存在點
,使得以
、
、
為頂點的三角形與
相似,若存在,直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com