【題目】下列各圖形都是由同樣大小的圓和正三角形按一定的規律組成.其中,第①個圖形由8個圓和1個正三角形組成,第②個圖形由16個圓和4個正三角形組成,第③個圖形由24個圓和9個正三角形組成,……則第_____個圖形中圓和正三角形的個數相等 .
科目:初中數學 來源: 題型:
【題目】(模型介紹)
古希臘有一個著名的“將軍飲馬問題”,大致內容如下:古希臘一位將軍,每天都要巡查河岸同側的兩個軍營.他總是先去
營,再到河邊飲馬,之后,再巡查
營.如圖①,他時常想,怎么走才能使每天走的路程之和最短呢?大數學家海倫曾用軸對稱的方法巧妙地解決了這個問題.如圖②,作點
關于直線
的對稱點
,連結
與直線
交于點
,連接
,則
的和最。埬阍谙铝械拈喿x、理解、應用的過程中,完成解答.理由:如圖③,在直線
上另取任一點
,連結
,
,
,∵直線
是點
,
的對稱軸,點
,
在
上,
(1)∴__________,
_________,∴
____________.在
中,∵
,∴
,即
最小.
(歸納總結)
在解決上述問題的過程中,我們利用軸對稱變換,把點在直線同側的問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即轉化為“三角形兩邊之和大于第三邊”的問題加以解決(其中點
為
與
的交點,即
,
,
三點共線).由此,可拓展為“求定直線上一動點與直線同側兩定點的距離和的最小值”問題的數學模型.
(模型應用)
(2)如圖④,正方形的邊長為4,
為
的中點,
是
上一動點.求
的最小值.
解析:解決這個問題,可借助上面的模型,由正方形對稱性可知,點與
關于直線
對稱,連結
交
于點
,則
的最小值就是線段
的長度,則
的最小值是__________.
(3)如圖⑤,圓柱形玻璃杯,高為,底面周長為
,在杯內離杯底
的點
處有一滴蜂蜜,此時一只螞蟻正好在外壁,離杯上沿
與蜂蜜相對的點
處,則螞蟻到達蜂的最短路程為_________
.
(4)如圖⑥,在邊長為2的菱形中,
,將
沿射線
的方向平移,得到
,分別連接
,
,
,則
的最小值為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當點E在邊BC上時,求證DE=EB;
(2)如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;
(3)如圖3,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,我國古建筑的大門上常常懸掛著巨大的匾額,圖2中的線段就是懸掛在墻壁
上的某塊匾額的截面示意圖.已知
米,
.從水平地面點
處看點
,仰角
,從點
處看點
,仰角
.且
米,求匾額懸掛的高度
的長.(參考數據:
,
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統計圖:
運動項目 | 頻數(人數) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請根據以上圖表信息解答下列問題:
(1)頻數分布表中的 ,
;
(2)在扇形統計圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學生選擇參加乒乓球運動?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com