精英家教網 > 初中數學 > 題目詳情

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)寫出圖中小于平角的角.

(2)求出∠BOD的度數.

(3)小明發現OE平分∠BOC,請你通過計算說明道理.

【答案】(1)答案見解析 (2)155° (3)答案見解析

【解析】

(1)根據角的定義即可解決;(2)根據∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC即可;(3)根據∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數即可說明.

(1)圖中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.

(2)因為∠AOC=50°,OD平分∠AOC,

所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,

所以∠BOD=∠DOC+∠BOC=155°.

(3)因為∠DOE=90°,∠DOC=25°,

所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.

又因為∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,

所以∠COE=∠BOE,所以OE平分∠BOC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們知道平行四邊形有很多性質,現在如果我們把平行四邊形沿著它的一條對角線翻折,會發現這其中還有更多的結論.

(發現與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB`C,連結B`D.

結論1:△AB`C與ABCD重疊部分的圖形是等腰三角形;結論2:B`D∥AC;

1)請證明結論1和結論2

(應用與探究)

2)在ABCD中,已知BC=2,∠B=45°,將△ABC沿AC翻折至△AB`C,連接B`D若以A、C、D、B`為頂點的四邊形是正方形,求AC的長(要求畫出圖形)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD,過點AAEBC,垂足為E連接DE,F為線段DE上一點,AFE=∠B

(1)求證ADF∽△DEC;

(2)若AB=8,AD=,AF=,AE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)平面內將一副三角板按如圖1所示擺放,EBC= °;

(2)平面內將一副三角板按如圖2所示擺放,若EBC=165°,那么α= °;

(3)平面內將一副三角板按如圖3所示擺放,EBC=115°,求α的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在4×4的正方形網格中,ABC的頂點都在格點上,下列結論錯誤的是(  )

A. AB5 B. C90° C. AC2 D. A30°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲口袋中裝有兩個相同的小球,它們的標號分別為2和7,乙口袋中裝有兩個相同的小球,它們的標號分別為4和5,丙口袋中裝有三個相同的小球,它們的標號分別為3,8,9.從這3個口袋中各隨機地取出1個小球.

1求取出的3個小球的標號全是奇數的概率是多少?

2以取出的三個小球的標號分別表示三條線段的長度,求這些線段能構成三角形的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,,,點Dx軸上,若在線段包括兩個端點上找點P,使得點A,DP構成等腰三角形的點P恰好只有1,下列選項中滿足上述條件的點D坐標不可以是  

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一平面坐標系中,函數y=mx+m和y=﹣mx2+2x+2(m是常數,且m0)的圖象可能是( 。

A. B. C. D.

【答案】D

【解析】A.由函數y=mx+m的圖象可知m<0,即函數y=mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;

B.由函數y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應在y軸左側,與圖象不符,故B選項錯誤;

C.由函數y=mx+m的圖象可知m>0,即函數y=mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;

D.由函數y=mx+m的圖象可知m<0,即函數y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應在y軸左側,與圖象相符,故D選項正確;

故選:D.

型】單選題
束】
10

【題目】如圖,已知菱形ABCD的周長為16,面積為,EAB的中點,若P為對角線BD上一動點,則EP+AP的最小值為( 。

A. 2 B. 2 C. 4 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發,勻速行駛,設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發至快車到達乙地過程中yx之間的函數關系,已知兩車相遇時快車比慢車多行駛40千米,快車到達乙地時,慢車還有( )千米到達甲地.

A. 70 B. 80 C. 90 D. 100

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视