【題目】中,
是
的中點,點
在
上(點
不與
重合),過點
的直線交
于
,交射線
于點
,設
,
.
(1)如圖1,若為等邊三角形,點
與
重合,
,求證:
;
(2)如圖2,若點與
重合,求證:
;
(3)如圖3,若,
,
,直接寫出
的值.
科目:初中數學 來源: 題型:
【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現從各年的隨機抽取了部分學生的鞋號,繪制了統計圖A和圖B,請根據相關信息,解答下列問題:
(1)本次隨機抽樣的學生數是多少?A中值是多少?
(2)本次調查獲取的樣本數據的眾數和中位數各是多少?
(3)根據樣本數據,若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線:
與
軸交于點
、
兩點,與
軸交于點
,且
.
(1)直接寫出拋物線的解析式;
(2)如圖1,點在
軸左側的拋物線
上,將點
先向右平移4個單位長度,再向下平移
個單位長度,得到的對應點
恰好落在拋物線
上,若
,求點
的坐標;
(3)如圖2,將拋物線向上平移2個單位長度得到拋物線
,一次函數
的圖象
與拋物線
只有一個公共點
,與
軸交于點
,探究:
軸上是否存在定點
滿足
?若存在,求出點
的坐標;否則,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比函數的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結AD、OC,若△ABO的周長為
,AD=2,則△ACO的面積為( )
A. B. 1 C. 2 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為弘揚傳統文化,某校開展了“傳承經典文化,閱讀經典名著”活動.為了解七、八年級學生(七、八年級各有600名學生)的閱讀效果,該校舉行了經典文化知識競賽.現從兩個年級各隨機抽取20名學生的競賽成績(百分制)進行分析,過程如下:
收集數據:
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數據:
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數據:
平均數 | 眾數 | 中位數 | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應用數據:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學生在本次競賽中成績在90分以上的共有多少人?
(3)你認為哪個年級的學生對經典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com