精英家教網 > 初中數學 > 題目詳情

【題目】疫情無情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學生積極參加獻愛心活動,該班50名學生的捐款統計情況如下表:

金額/

5

10

20

50

100

人數

6

17

14

8

5

則他們捐款金額的眾數和中位數分別是( )

A.100,10B.10,20C.1710D.17,20

【答案】B

【解析】

眾數指一組數據中出現次數最多的數,中位數指一組數據從小到大排序后,若有奇數個數據,則位于中間位置的數是中位數,若有偶數個數據,則位于中間位置的兩個數據的平均數是中位數,由此進行計算判斷即可.

解:由題意該班5050名學生的捐款金額,出現次數最多的數據是10,

∴眾數是10

將捐款金額從小到大排序后,第25個同學和第26個同學捐款20元,

∴中位數是=20,

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某社區計劃對1200m2的區域進行綠化,經投標由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且甲、乙兩隊在分別獨立完成面積為300m2區域的綠化時,甲隊比乙隊少用3天.

甲、乙兩施工隊每天分別能完成綠化的面積是多少?

設先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務,求y關于x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了解九年級學生對三大球類運動的喜愛情況,從九年級學生中隨機抽取部分學生進行調查問卷,通過分析整理繪制了如下兩幅統計圖.請根據兩幅統計圖中的信息回答下列問題:

(1)求參與調查的學生中,喜愛排球運動的學生人數,并補全條形圖;

(2)若該中學九年級共有800名學生,請你估計該中學九年級學生中喜愛籃求運動的學生有多少名?

(3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】北京時間2020512916分,我國自主研制的快舟一號甲運載火箭在酒泉衛星發射中心發射成功.此次發射的行云二號”01星命名為行云·武漢號,并通過在火箭箭體上涂刷英雄武漢偉大中國致敬醫護工作者群像的方式,致敬武漢、武漢人民和廣大醫護工作者.如圖,火箭從地面L處發射,當火箭達到A點時,從位于地面R處雷達站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達B點,此時測得仰角為45.5°求這枚火箭從AB的平均速度是多少(結果精確到0.01)?(參考數據:sin42.4°≈0.67cos42.4°≈0.74,tan42.4°≈0.905sin45.5°≈0.71,cos45.5°≈0.70tan45.5°≈1.02

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.732tan20°≈0.36,結果精確到0.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某軟件開發公司開發了AB兩種軟件,每種軟件成本均為1400元,售價分別為2000元、1800元,這兩種軟件每天的銷售額共為112000元,總利潤為28000元.

1)該店每天銷售這兩種軟件共多少個?

2)根據市場行情,公司擬對A種軟件降價銷售,同時提高B種軟件價格.此時發現,A種軟件每降50元可多賣1件,B種軟件每提高50元就少賣1件.如果這兩種軟件每天銷售總件數不變,那么這兩種軟件一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(初步探究)

1)如圖1,在四邊形ABCD中,∠B=∠C90°,點E是邊BC上一點,ABECBECD,連接AE、DE.判斷△AED的形狀,并說明理由.

(解決問題)

2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BC、AD上分別作出點E、F,使得點F、EP是一個等腰直角三角形的三個頂點,且PEPF,∠FPE90°.要求:僅用圓規作圖,保留作圖痕跡,不寫作法.

(拓展應用)

3)如圖3,在平面直角坐標系xOy中,已知點A2,0),點B4,1),點C在第一象限內,若△ABC是等腰直角三角形,則點C的坐標是   

4)如圖4,在平面直角坐標系xOy中,已知點A1,0),點Cy軸上的動點,線段CA繞著點C按逆時針方向旋轉90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點D,過點DDEAC于點E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形的邊長為,點為正方形的中心,點邊上一動點,直線于點,過點,垂足為點,連接,則的最小值為(

A.2B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视