【題目】如圖1,在平面直角坐標系中直線
與x軸、y軸相交于A、B兩點,動點C在線段OA上,將線段CB繞著點C順時針旋轉
得到CD,此時點D恰好落在直線AB上時,過點D作
軸于點E.
求證:
≌
;
如圖2,將
沿x軸正方向平移得
,當直線
經過點D時,求點D的坐標及
平移的距離;
若點P在y軸上,點Q在直線AB上
是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐;若不存在,請說明理由.
【答案】(1)證明見解析;(2)平移的距離是
個單位.(3)點Q的坐標為
或
或
【解析】
根據AAS或ASA即可證明;
首先求出點D的坐標,再求出直線
的解析式,求出點
的坐標即可解決問題;
如圖3中,作
交y軸于P,作
交AB于Q,則四邊形PCDQ是平行四邊形,求出直線PC的解析式,可得點P坐標,點C向左平移1個單位,向上平移
個單位得到P,推出點D向左平移1個單位,向上平移
個單位得到Q,再根據對稱性可得
、
的坐標;
證明:
,
,
,
,
,
≌
.
≌
,
,
,
,
把代入
得到,
,
,
,
,
,
,
直線BC的解析式為
,
設直線的解析式為
,把
代入得到
,
直線
的解析式為
,
,
,
平移的距離是
個單位.
解:如圖3中,作
交y軸于P,作
交AB于Q,則四邊形PCDQ是平行四邊形,
易知直線PC的解析式為,
,
點C向左平移1個單位,向上平移
個單位得到P,
點D向左平移1個單位,向上平移
個單位得到Q,
,
當CD為對角線時,四邊形是平行四邊形,可得
,
當四邊形為平行四邊形時,可得
,
綜上所述,滿足條件的點Q的坐標為或
或
科目:初中數學 來源: 題型:
【題目】探索規律:觀察下面由組成的圖案和算式,解答問題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請計算 1+3+5+7+9+11;
(2)請計算 1+3+5+7+9+…+19;
(3)請計算 1+3+5+7+9+…+(2n﹣1);
(4)請用上述規律計算:21+23+25+…+99.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,點 C 是線段 AB 上一點,且 5BC=2AB,D 是 AB 的中點,E 是CB 的中點,(1)若 DE=6,求 AB 的長;(2)求 AD:AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點E,DF⊥AC于點F.
(1)求證:AB=AC;
(2)若AD=2 ,∠DAC=30°,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB經過⊙O上的點C,直線AO與⊙O交于點E和點D,OB與⊙O交于點F,連接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求證:①直線AB是⊙O的切線;②∠FDC=∠EDC;
(2)求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A的坐標為(﹣2,0),直線y=﹣ x+3與x軸、y軸分別交于點B和點C,連接AC,頂點為D的拋物線y=ax2+bx+c過A、B、C三點.
(1)請直接寫出B、C兩點的坐標,拋物線的解析式及頂點D的坐標;
(2)設拋物線的對稱軸DE交線段BC于點E,P是第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標;
(3)設點M是線段BC上的一動點,過點M作MN∥AB,交AC于點N,點Q從點B出發,以每秒1個單位長度的速度沿線段BA向點A運動,運動時間為t(秒),當t(秒)為何值時,存在△QMN為等腰直角三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格中有一條美麗可愛的小金魚.
(1)若方格的邊長為1,則小魚的面積為 .
(2)畫出小魚向左平移3格后的圖形(不要求寫作圖步驟和過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一件工程甲獨做50天可完,乙獨做75天可完,現在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤
A. 10 B. 20 C. 30 D. 25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com