【題目】已知二次函數.
(1)該二次函數的頂點坐標為__________;
(2)該函數的圖象與軸的交點坐標為__________;
(3)用五點法畫函數圖象
… | … | ||||||
… | … |
(4)當時,則
的取值范圍是__________;
(5)將該拋物線繞頂點旋轉180°,所得函數的解析式為__________;
(6)拋物線與
軸有且僅有一個交點,則
__________.
【答案】(1);(2)
,
(3)函數圖象見解析;(4)
;(5)
;(6)4.
【解析】
(1)將二次函數的解析式化成頂點式即可得;
(2)令,求解一元二次方程即可得;
(3)先列出圖象上的五個點,再順次連接即可畫出函數圖象;
(4)根據(3)的圖象即可得;
(5)先根據旋轉的性質可得頂點坐標不變,從而可得新二次函數的頂點式,再求出點繞頂點旋轉
所得點的坐標,然后代入求解即可得;
(6)根據二次函數的圖象可知,將其向上平移4個單位長度所得的圖象與
軸有且僅有一個交點,由此即可得出k的值.
(1)將二次函數化成頂點式為
則該二次函數的頂點坐標為
故答案為:;
(2)令得
解得
則該函數的圖象與軸的交點坐標為
,
故答案為:,
;
(3)根據二次函數的解析式,列出五個點(注:五個點對稱列出即可,不刻意要求特殊點
),如下表所示:
… | -3 | -2 | -1 | 0 | 1 | … | |
… | 0 | -3 | -4 | -3 | 0 | … |
利用五點法畫函數圖象如下:
(4)由(3)所畫的函數圖象可知,當時,
故答案為:;
(5)如圖,點B繞點A旋轉的對應點為點D
由旋轉的性質得:新二次函數的頂點坐標仍為
設新二次函數的解析式為
由點可知,
由旋轉的性質可知,
在和
中,
將代入
得,
解得
則新二次函數的解析式為
故答案為:;
(6)由函數圖象的平移規律可知,拋物線是由二次函數
向上
或向下
平移得到的
由二次函數的圖象可知,將其向上平移4個單位長度所得的圖象與
軸有且僅有一個交點
則
故答案為:4.
科目:初中數學 來源: 題型:
【題目】設a,b是任意兩個不等實數,我們規定:滿足不等式的實數x的所有取值的全體叫做閉區間,表示為
對于一個函數,如果它的自變量x與函數值y滿足:當
,我們就稱此函數是閉區間
上的“閉函數”.
(1)反比例函數是閉區間
上的“閉函數”嗎?請判斷并說明理由;
(2)若一次函數是閉區間
上的“閉函數”,求此函數的解析式;
(3)若函數是閉區間
上的“閉函數”,求實數a,b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AD=3,DC=4,動點P在線段DC上以每秒1個單位的速度從點D向點C運動,過點P作PQ∥AC交AD于Q,將△PDQ沿PQ翻折得到△PQE. 設點P的運動時間為t(s).
(1)當點E落在邊AB上時,t的值為 ;
(2)設△PQE與△ADC重疊部分的面積為s,求s與t的函數關系式;
(3)如圖2,以PE為直徑作⊙O.當⊙O與AC邊相切時,求CP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+3.
(1)求拋物線的表達式;
(2)在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;
(3)在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
材料一:所有正整數在進行某種規定步驟的運算后,會得到一個恒定不變的數,我們把這個恒定不變的數叫做穩定數.規定求三位數的穩定數的運算步驟是:任意三位數A=(百位與個位不相同),將這個數逆置后得A1=
,A與A1中較大的數減去較小的數得到一個數B,再將B進行一次逆置得B1(若B為兩位數則交換十位與個位逆置),將B1與B相加得C,C就是該三位數A的穩定數,記作
.
材料二:當兩個三位數的穩定數相同時,這兩個三位數的百位數字與個位數字之差的絕對值或者都大于1,或者都等于1.
(1)求352的穩定數是 ;百位與個位相差2的三位數,它的穩定數是 .
(2)現有S=301+10p,T=100m+40+n(1≤p≤9,1≤m≤9,1≤n≤9,p,m,n均是整數),其中T是偶數,若,3p+m+n=20,|p-n|=1,
,請求出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角中,
,
,點
是邊
上一動點,連接
,以點
為中心,將線段
順時針旋轉135°,得到線段
,連接
.
(1)依題意,補全圖形;
(2)求證:;
(3)點在線段
的延長線上,點
是點
關于點
的對稱點,寫出
的一個值,使得對任意的點
總有
,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線經過
點,直線
是拋物線的對稱軸.
(1)求拋物線的函數關系式;
(2)在直線上確定一點
,使
的周長最小,求出點
的坐標;
(3)若點是拋物線上一動點,當
時,請直接寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察如圖,填表后再回答問題:
(1)在橫線上填入正確的數:
的個數:8,______ ,24
★的個數:1,4,______
(2)試求第6個圖形中“”的個數和“
”的個數?
(3)試求第108個圖形中“”的個數與“
”的個數之差?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解某校九年級學生的跳高水平,隨機抽取該年級50名學生進行跳高測試,并把測試成績繪制成如圖所示的頻數表和未完成的頻數直方圖(每組含前一個邊界值,不含后一個邊界值).
(1)求a的值,并把頻數直方圖補充完整;
(2)該年級共有500名學生,估計該年級學生跳高成績在1.29m(含1.29m)以上的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com