精英家教網 > 初中數學 > 題目詳情

【題目】在△ABC中,ABAC,D、E分別在BCAC上,ADBE相交于點F

1)如圖1,若∠BAC60°,BDCE,求證:∠1=∠2;

2)如圖2,在(1)的條件下,連接CF,若CFBF,求證:BF2AF;

3)如圖3,∠BAC=∠BFD2CFD90°,若SABC2,求SCDF的值.

【答案】1)見解析;(2)見解析;(3

【解析】

1)根據等邊三角形的判定定理得到△ABC為等邊三角形,得到ABBC,∠ABC=∠C60°,證明△ABD≌△BCE,根據全等三角形的性質證明結論;

2)過BBHAD,根據全等三角形的性質得到∠BAD=∠CBE,證明△AHB≌△BFC,根據全等三角形的性質解答;

3)過CCMADAD延長線于M,過CCNBEBE延長線于N,根據角平分線的性質得到CMCN,證明△AFB≌△CMA,根據全等三角形的性質得到BFAMAFCM,根據三角形的面積公式列式計算即可.

1)證明:∵ABAC,∠BAC60°,

∴△ABC為等邊三角形,

ABBC,∠ABC=∠C60°,

在△ABD和△BCE中,

,

∴△ABD≌△BCESAS),

∴∠1=∠2;

2)如圖2,過BBHAD,垂足為H,

∵△ABD≌△BCE

∴∠BAD=∠CBE,

∵∠ABF+CBE60°,

∴∠BFD=∠ABF+BAD60°,

∴∠FBH30°,

BF2FH,

在△AHB和△BFC中,

∴△AHB≌△BFCAAS),

BFAHAF+FH2FH,

AFFH,

BF2AF;

3)如圖3,過CCMADAD延長線于M,過CCNBEBE延長線于N,

∵∠BFD2CFD90°,

∴∠EFC=∠DFC45°,

CF是∠MFN的角平分線,

CMCN,

∵∠BAC=∠BFD90°,

∴∠ABF=∠CAD,

在△AFB和△CMA中,

∴△AFB≌△CMAAAS

BFAM,AFCM

AFCN,

∵∠FMC90°,∠CFM45°,

∴△FMC為等腰直角三角形,

FMCM,

BFAMAF+FM2CM

SBDF2SCDF,

AFCMFMCM,

AFFM,

FAM的中點,

,

AFBF,CNBF,AFCN,

SAFBSBFC,

SCDFx,則SBDF2x,

SAFBSBFC3x

,

3x+3x+x2

解得,x,即SCDF

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=2,OB=1,將RtAOB繞點O順時針旋轉90°后得到RtFOE,將線段EF繞點E逆時針旋轉90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發現正好一葉片到達最高位置,此時測得葉片的頂端DDC、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG10米,BGHGCHAH,求塔桿CH的高.(參考數據:tan55°≈1.4tan35°≈0.7sin55°≈0.8,sin35°≈0.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD米,點A、D、E在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,PA、PB是⊙O的切線,A、B為切點,∠APB=40°,點C是⊙O上不同于A、B的任意一點,則∠ACB的度數為______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,ADCD于點D.EAB延長線上一點,CE交⊙O于點F,連結OCAC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°E=30°.①求∠OCE的度數.②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在中,內角與外角的平分線相交于點,,,交,連接、,下列結論:①;②;③垂直平分;④.其中正確的是(

A. ①②④B. ①③④C. ②③④D. ①③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠AOB的大小為α,P是∠AOB內部的一個定點,且OP2,點E、F分別是OAOB上的動點,若△PEF周長的最小值等于2,則α=(

A. 30°B. 45°C. 60°D. 15°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视