【題目】如圖,在Rt△ABC中,∠ACB = 90,D為AB的中點,AE∥DC,CE∥DA.
(1)求證:四邊形ADCE是菱形;
(2)連接DE,若AC =,BC =2,求證:△ADE是等邊三角形.
【答案】(1)詳見解析;(2)詳見解析
【解析】
(1)先根據題意證明四邊形ADCE是平行四邊形,再由直角三角形斜邊中線等于斜邊的一半可得AD= BD=CD,即可可求證結論;
(2)在Rt△ABC中,由三角函數值可知∠CAB=30,繼而根據菱形的性質可知AE = AD,∠EAD=2∠CAB=60,進而即可求證結論.
證明:(1)∵ AE∥DC,CE∥DA,
∴ 四邊形ADCE是平行四邊形.
∵ 在Rt△ABC中, D為AB的中點,
∴ AD= BD=CD=.
∴ 四邊形ADCE是菱形.
(2)在Rt△ABC中,AC =,BC =2,
∴ .
∴ ∠CAB=30.
∵ 四邊形ADCE是菱形.
∴ AE = AD,∠EAD=2∠CAB=60.
∴ △ADE是等邊三角形.
科目:初中數學 來源: 題型:
【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉,得到△A1BC1.
(1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數;
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉過程中,點P的對應點是點P1,求線段EP1長度的最大值與最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,樓頂有一根天線,為了測量樓的高度,在地面上取成一條直線的三點E、D、C,在點C處測得天線頂端A的仰角為60°,從點C走到點D,CD=6米,從點D處測得天線下端B的仰角為45°.又知A、B、E在一條線上,AB=25米,求樓高BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸的負半軸交于點
,與
軸交于點
,連結
,點C(6,
)在拋物線上,直線
與
軸交于點
(1)求的值及直線
的函數表達式;
(2)點在
軸正半軸上,點
在
軸正半軸上,連結
與直線
交于點
,連結
并延長交
于點
,若
為
的中點.
①求證:;
②設點的橫坐標為
,求
的長(用含
的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與x軸交于點A,B(A在B的左側),拋物線的對稱軸與x軸交于點D,且OB=2OD.
(1)當時,
①寫出拋物線的對稱軸;
②求拋物線的表達式;
(2)存在垂直于x軸的直線分別與直線:
和拋物線交于點P,Q,且點P,Q均在x軸下方,結合函數圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90,D為AB的中點,AE∥DC,CE∥DA.
(1)求證:四邊形ADCE是菱形;
(2)連接DE,若AC =,BC =2,求證:△ADE是等邊三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com