精英家教網 > 初中數學 > 題目詳情

【題目】如圖,OA的方向是北偏東15°OB的方向是西偏北50°,ODOB的反向延長線.

1)若∠AOC=∠AOB,求OC的方向.

2)在(1)問的條件下,作∠AOD的角平分線OE,求∠COE的度數.

【答案】1OC的方向是北偏東70°;(2作∠AOD的角平分線OE,見解析,COE7.5°.

【解析】

1)由題意先根據OB的方向是西偏北50°求出∠BOF的度數,進而求出∠FOC的度數即可;

2)根據題意求出∠AOE的度數,再根據角平分線的定義求出∠AOC的度數,然后根據角的和差關系計算即可.

解:(1∵OB的方向是西偏北50°,

∴∠BOF90°50°40°,

∴∠AOB40°+15°55°,

∵∠AOC∠AOB

∴∠AOC55°,

∴∠FOC∠AOF+∠AOC15°+55°70°

∴OC的方向是北偏東70°;

2)由題意可知∠AOD90°15°+50°125°,

∠AOD的角平分線OE如下圖:

∵OE∠AOD的角平分線,

∴∠COE∠AOE∠AOC62.5°55°7.5°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知是過點的一條射線,,分別平分.請回答下列問題:

1)如圖①,如果的平分線,求的度數是多少?

2)如圖②,如果內部的任意一條射線,的度數有變化嗎?為什么?

3)如圖③,如果外部的任意一條射線,的度數能求出嗎?如果能求出,請寫出過程;如果不能求出,請簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知y+1x+2成正比例,且當x=4時,y=4

(1)y關于x的函數關系式;

(2)若點(a,2)(2,b)均在(1)中函數圖像上,求ab的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下面由組成的圖案和算式,解答問題:

1)請猜想____ ______;

2)請猜想_________;

3)請用上述規律計算:的值;

4)請用上述規律計算: ______(直接寫答案).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知OC是∠AOB內部的一條射線,M,N分別為OAOC上的點,線段OMON同時分別以30°/s,10°/s的速度繞點O逆時針旋轉,設旋轉時間為t秒.

1)如圖①,若∠AOB120°,當OM、ON逆時針旋轉到OM、ON處,

①若OM,ON旋轉時間t2時,則∠BON′+COM   °;

②若OM平分∠AOCON平分∠BOC,求∠MON的值;

2)如圖②,若∠AOB4BOC,OM,ON分別在∠AOC,∠BOC內部旋轉時,請猜想∠COM與∠BON的數量關系,并說明理由.

3)若∠AOC80°,OM,ON在旋轉的過程中,當∠MON20°,t   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)探究:哪些特殊的角可以用一副三角板畫出?

在①,②,③,④中,小明同學利用一副三角板畫不出來的特殊角是_________;(填序號)

2)在探究過程中,愛動腦筋的小明想起了圖形的運動方式有多種.如圖,他先用三角板畫出了直線,然后將一副三角板拼接在一起,其中角()的頂點與角()的頂點互相重合,且邊、都在直線.固定三角板不動,將三角板繞點按順時針方向旋轉一個角度,當邊與射線第一次重合時停止.

①當平分時,求旋轉角度;

②是否存在?若存在,求旋轉角度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點NCD邊的延長線上,且滿足∠MAN=90°,聯結MN、AC,N與邊AD交于點E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為打造美麗校園,小明、小紅為校園內的一塊空地分別提供了如圖甲、乙的設計方案,其中陰影部分都用于綠化,圖甲空白區域修建一座雕像,圖乙空白區域修建石子小路.已知S表示圖甲中綠化的面積S表示圖乙中綠化的面積.

1S   (用含a,b的代數式表示);

2)設k,

①請用含ab的代數式表示k并化簡;

②當2SSa2時,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在綜合與實踐課上,老師組織同學們以“矩形紙片的折疊”為主題開展數學活動.

1)奮進小組用圖1中的矩形紙片ABCD,按照如圖2所示的方式,將矩形紙片沿對角線AC折疊,使點B落在點處,則重合部分的三角形的類型是________.

2)勤學小組將圖2中的紙片展平,再次折疊,如圖3,使點A與點C重合,折痕為EF,然后展平,則以點A、F、C、E為頂點的四邊形是什么特殊四邊形?請說明理由.

3)創新小組用圖4中的矩形紙片ABCD進行操作,其中,先沿對角線BD對折,點C落在點的位置,AD于點G,再按照如圖5所示的方式折疊一次,使點D與點A重合,得折痕ENENAD于點M.則EM的長為________cm.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视