精英家教網 > 初中數學 > 題目詳情

【題目】某超市銷售一種商品,成本每千克40元,規定每千克售價不低于成本,且不高于80元.銷售價為每千克60元時,一天能銷售80千克,經市場調查,該商品每漲價1元,一天銷售量就減少2千克,設該商品的售價漲了x元,每天銷售該商品的總利潤為y元.

1)求yx之間的函數表達式;

2)當x為多少時每天總利潤y最大,最大利潤是多少?

【答案】1y=﹣2x2+40x+1600;(2)當x10時每天總利潤y最大,最大利潤是1800

【解析】

1)根據總利潤=單件利潤×銷售量可得函數解析式;

2)將所得函數解析式配方成頂點式,再根據二次函數的性質求解可得.

解:(1)根據題意知,

2)∵,

∴當x10時,y取得最大值,最大值為1800,

答:當x10時每天總利潤y最大,最大利潤是1800

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長ABBC長分別為1520,那么P到矩形兩條對角線ACBD的距離之和是(  )

A.6B.12C.24D.不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小東根據學習函數的經驗,對函數的圖象與性質進行了探究.下面是小東的探究過程,請補充完整,并解決相關問題:

(1)函數的自變量x的取值范圍是 ;

(2)下表是yx的幾組對應值.

x

0

1

2

3

4

y

2

4

2

m

表中m的值為________________;

(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點. 根據描出的點,畫出函數的大致圖象;

(4)結合函數圖象,請寫出函數的一條性質:______________________.

(5)解決問題:如果函數與直線y=a的交點有2個,那么a的取值范圍是______________ .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標;

(3)在(2)的結論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】創客聯盟的隊員想用3D打印完成一幅邊長為4米的正方形作品ABCD,設計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打印;中心區是正方形A′B′C′D′,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如下表

材料

價格(元/2

60

30

設矩形的較短邊AH的長為x米,打印材料的總費用為y元.

1A′D′的長為   米(用含x的代數式表示);

2)求y關于x的函數解析式;

3)當中心區的邊長不小于3時,預備材料的購買資金700元夠用嗎?請利用函數的增減性來說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖1,矩形OABC的兩個頂點A,C分別在x軸,y軸上,點B的坐標是(82),點P是邊BC上的一個動點,連接AP,以AP為一邊朝點B方向作正方形PADE,連接OP并延長與DE交于點M,設CPaa0).

1)請用含a的代數式表示點PE的坐標.

2)連接OE,并把OE繞點E逆時針方向旋轉90°得EF.如圖2,若點F恰好落在x軸的正半軸上,求a的值.

3)①如圖1,當點MDE的中點時,求a的值.

②在①的前提下,并且當a4時,OP的延長線上存在點Q,使得EQ+PQ有最小值,請直接寫出EQ+PQ的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AB6,AD9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BGAE,垂足為G,BG4,則CEF的周長為(  )

A.11.5B.10C.9.5D.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于去分母可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.

轉化的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3=

(2)拓展:用轉化思想求方程的解;

(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象經過(﹣10),(30),(1,﹣5)三點.

1)求該二次函數的解析式;

2)求該圖象的頂點坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视