【題目】如圖,在由邊長為1的小正方形組成的網格中.點 A,B,C,D 都在這些小正方形的格點上,AB、CD 相交于點E,則sin∠AEC的值為_____.
科目:初中數學 來源: 題型:
【題目】如圖①②,在平面直角坐標系中,邊長為2的等邊恰好與坐標系中的
重合,現將
繞邊
的中點
點也是
的中點),按順時針方向旋轉
到△
的位置.
(1)求點的坐標;
(2)求經過三點、
、
的拋物線的解析式;
(3)如圖③,是以
為直徑的圓,過
點作
的切線與
軸相交于點
,求切線
的解析式;
(4)拋物線上是否存在一點,使得
.若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為10,sinA=,點M為邊AD上的一個動點且不與點A和點D重合,點A關于直線BM的對稱點為點A',點N為線段CA'的中點,連接DN,則線段DN長度的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為80元,用180元購進甲種玩具的件數與用300元購進乙種玩具的件數相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共32件,其中甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1350元,求商場共有幾種進貨方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水產養殖戶,一次性收購了小龍蝦,計劃養殖一段時間后再出售.已知每天放養的費用相同,放養
天的總成本為
萬元;放養
天的總成本為
萬元(總成本=放養總費用+收購成本).
(1)設每天的放養費用是萬元,收購成本為
萬元,求
和
的值;
(2)設這批小龍蝦放養天后的質量為
(
),銷售單價為
元/
.根據以往經驗可知:m與t的函數關系式為
,y與t的函數關系如圖所示
①求y與t的函數關系式;
②設將這批小龍蝦放養t天后一次性出售所得利潤為W元,求當為何值時,W最大?并求出W的最大值.(利潤=銷售總額-總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價
(元)之間存在一次函數關系,如圖所示.
(1)求與
之間的函數關系式;
(2)如果規定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網店店主熱心公益事業,決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發沿EA方向運動,連接PD,以PD為邊,在PD右側按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是( )
A. 8 B. 10 C. 3π D. 5π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】材料閱讀:
類比是數學中常用的數學思想.比如,我們可以類比多位數的加、減、乘、除的豎式運算方法,得到多項式與多項式的加、減、乘、除的運算方法.
理解應用:
(1)請仿照上面的豎式方法計算:;
(2)已知兩個多項式的和為,其中一個多項式為
.請用豎式的方法求出另一個多項式.
(3)已知一個長為,寬為
的矩形
,將它的長增加8.寬增加
得到一個新矩形
,且矩形
的周長是
周長的3倍(如圖).同時,矩形
的面積和另一個一邊長為
的矩形
的面積相等,求
的值和矩形
的另一邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:直線DF是⊙O的切線;
(2)求證:BC2=4CFAC;
(3)若⊙O的半徑為4,∠CDF=15°,求陰影部分的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com