精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,△ABC中,DE是BC的垂直平分線,DE交AC于點E,連接BE,若BE=13,BC=10,則sinC=

【答案】
【解析】解:∵DE是BC的垂直平分線, ∴CE=BE=13,CD=BD=5,∠CDE=90°,
∴DE= =12,
∴sinC= =
所以答案是:
【考點精析】本題主要考查了線段垂直平分線的性質和解直角三角形的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線l1∥l2 , 以直線l1上的點A為圓心、適當長為半徑畫弧,分別交直線l1、l2于點B、C,連接AC、BC.若∠ABC=67°,則∠1=(
A.23°
B.46°
C.67°
D.78°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是(
A.隨機拋擲一枚硬幣,反面一定朝上
B.數據3,3,5,5,8的眾數是8
C.某商場抽獎活動獲獎的概率為 ,說明毎買50張獎券中一定有一張中獎
D.想要了解廣安市民對“全面二孩”政策的看法,宜采用抽樣調查

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元,求這兩次各購進這種襯衫多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在學習完“利用三角函數測高”這節內容之后,某興趣小組開展了測量學校旗桿高度的實踐活動,如圖,在測點A處安置測傾器,量出高度AB=1.5m,測得旗桿頂端D的仰角∠DBE=32°,量出測點A到旗桿底部C的水平距離AC=20m,根據測量數據,求旗桿CD的高度.(參考數據:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y= 的圖象與一次函數y=kx﹣3的圖象在第一象限內相交于點A,且點A的橫坐標為4.

(1)求點A的坐標及一次函數的解析式;
(2)若直線x=2與反比例函數和一次函數的圖象分別交于點B、C,求線段BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直角三角形的外接圓半徑為5cm,內切圓半徑為1cm,則此三角形的周長是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.

(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉,旋轉角為α(0°<α<180°)

(1)當∠BAC=60°時,將BP旋轉到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD__∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數量關系是_____;

(2)當∠BAC=120°時,將BP旋轉到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;

(3)將圖3中的BP繼續旋轉,當30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數量關系(不必證明).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视