精英家教網 > 初中數學 > 題目詳情

【題目】(1)觀察與發現:

小明將三角形紙片)沿過點的直線折疊,使得落在邊上,折痕為,展開紙片(如圖1);在第一次的折疊基礎上第二次折疊該三角形紙片,使點和點重合,折痕為,展平紙片后得到(如圖2).小明認為是等腰三角形,你同意他的結論嗎?請說明理由:

(2)模型與運用:

如圖3,在中,,平分于點,過點,交的延長線于點.若,求的面積.

【答案】(1)同意,理由詳見解析;(2)16.

【解析】

1)方法一由兩次折疊知,點AEF的中垂線上,所以AE=AF;方法二根據折疊可得,進而求解;
2)延長并交于點,由折疊的性質可得,進而得出,最后利用三角形的面積公式求解即可.

解:(1)理由如下:

如圖,設交于點,

由折疊知,平分,

所以.

由折疊知,,

所以

所以

所以.

為等腰三角形.

方法2:解:理由如下:

如圖,設交于點.

由折疊知,平分,

所以.

由折疊知,

所以,

中,

所以

所以,

為等腰三角形

2)延長并交于點,

由(1)知,

平分

的中線

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,CA=CBCD=CE,∠ACB=DCE

1)求證:BE=AD

2)當α=90°時,取ADBE的中點分別為點P、Q,連接CP,CQPQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且ABAE,延長ABDE的延長線交于點F.下列結論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖已知:E是AOB的平分線上一點,ECOA,EDOB,垂足分別為C、D.求證:

(1)ECD=EDC;

(2)OE是CD的垂直平分線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果店出售一種水果,經過市場估算,若每個售價為20元時,每周可賣出300個.經過市場調查,如果每個水果每降價1元,每周可多賣出25個,若設每個水果的售價為x(x<20).

(1)則這一周可賣出這種水果為________(用含x的代數式表示);

(2)若該周銷售這種水果的收入為6400元,那么每個水果的售價應為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠EFG的值為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)模型建立:

如圖,等腰直角三角形中,,直線經過點,過,過.求證:

2)模型應用:

①如圖,一次函數的圖象分別與軸、軸交于點、,以線段為腰在第一象限內作等腰直角三角形,則點的坐標為___________(直接寫出結果)

②如圖,在中,,,連接,作點,延長交于點,求證:的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,作,垂足為F,延長DF交邊AB于點E,在圖中一定和DFC相似的三角形個數是_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,在邊上順次取點,,…,在邊上順次取點,,…,使得,得到等腰△,△,△,△

1)若=30°,可以得到的最后一個等腰三角形是_________;

2)若按照上述方式操作,得到的最后一個等腰三角形是△,則的度數的取值范圍是________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视