【題目】如圖,反比例函數y=與一次函數y=-2x+m的圖象交于A、B兩點,AC⊥x軸于C, △AOC的面積為3.
(1)根據這些條件,試確定反比例函數的解析式;
(2)根據這些條件,你能求出一次函數的關系式嗎?如果能請你求出來;如果不能,請你添加一個條件,求出一次函數的關系式.(注意:不能添加m的值);
(3)根據你所求出的一次函數的關系式,求出△AOD的面積.
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA
與⊙O的另一個交點為E,連結AC,CE。
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD的邊長是4,∠ABC=120°,點M、N分別在邊AD、AB上,且MN⊥AC,垂足為P,把△AMN沿MN折疊得到△AˊMN,若△AˊDC恰為等腰三角形,則AP的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關系如圖所示.根據圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時間相同,已知乙種污水處理器每小時比甲種污水處理器多處理20噸的污水.
(1)分別求甲、乙兩種污水處理器的污水處理效率;
(2)若某廠每天同時開甲、乙兩種污水處理器處理污水共4小時,且甲、乙兩種污水處理器處理污水每噸需要的費用分別30元和50元,問該廠每個月(以30天計)需要污水處理費多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+2的圖象經過點A,且y隨x的增大而減小.則A點的坐標可以是( 。
A.(2,5)B.(﹣1,1)C.(3,0)D.(,4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的對稱軸是x=-4,拋物線與x軸交于A,B兩點,與y軸交于C點,O是坐標原點,且A,C的坐標分別是(-2,0),(0,3).
(1)求拋物線的解析式;
(2)拋物線上有一點是P,滿足∠PBC=90,求P點的坐標;
(3)y軸上是否存在點E使得△AOE與△PBC相似?若存在求出點E的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC是三邊都不相等的三角形,點O和點P是這個三角形內部兩點.
(1)如圖①,如果點P是這個三角形三個內角平分線的交點,那么∠BPC和∠BAC有怎樣的數量關系?請說明理由;
(2)如圖②,如果點O是這個三角形三邊垂直平分線的交點,那么∠BOC和∠BAC有怎樣的數量關系?請說明理由;
(3)如圖③,如果點P(三角形三個內角平分線的交點),點O(三角形三邊垂直平分線的交點)同時在不等邊△ABC的內部,那么∠BPC和∠BOC有怎樣的數量關系?請直接回答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個鋁質的三角形框架的三邊長分別為24 cm,30 cm,36 cm,要做一個與它相似的鋁質三角形的框架,現有長27 cm,45 cm的兩根鋁材,要求以其中的一根為邊,從另一根上截下兩段(允許有余材),則截法有______種.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com