【題目】如圖,在△ABC中,∠ACB=90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點D和E,作直線DE交AB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A=30°,BC=2,則AH的長是( )
A. B. 2C.
+1D. 2
﹣2
科目:初中數學 來源: 題型:
【題目】啟明公司生產某種產品,每件成本是3元,售價是4元,年銷售量為10萬件.為了獲得更好的效益,公司準備拿出一定的資金做廣告,根據經驗,每年投入的廣告費是x( 萬元)時,產品的年銷售量是原銷售量的y倍,且y=. 如果把利潤看作是銷售總額減去成本和廣告費:
(1)試寫出年利潤s(萬元)與廣告費x(萬元)的函數關系式,并計算廣告費是多少萬元時,公司獲得的年利潤最大?最大年利潤是多少萬元?
(2)把(1)中的最大利潤留出3萬元做廣告,其余的資金投資新項目,現有6個項目可供選擇,各項目每股投資金額和預計年收益如下表:
項目 | A | B | C | D | E | F |
每股(萬元) | 5 | 2 | 6 | 4 | 6 | 8 |
收益(萬元) | 0.55 | 0.4 | 0.6 | 0.5 | 0.9 | 1 |
如果每個項目只能投一股,且要求所有投資項目的收益總額不得低于1.6萬元, 問有幾種符合要求的方式?寫出每種投資方式所選的項目.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:小明為了計算的值 ,采用以下方法:
設 ①
則 ②
②-①得
∴
(1)= ;
(2) = ;
(3)求的和(
,
是正整數,請寫出計算過程 ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,有兩點、
,若滿足:當
時,
,
;當
時,
,
,則稱點為點的“友好點”.
(1)點的“友好點”的坐標是_______.
(2)點是直線
上的一點,點
是點
的“友好點”.
①當點與
點重合時,求點
的坐標.
②當點與
點不重合時,求線段
的長度隨著
的增大而減小時,
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓上一個動點(不與點A,B重合),D是弦AC上一點,過點D作DE⊥AB,垂足為E,過點C作半圓O的切線,交ED的延長線于點F.
(1)求證:FC=FD.
(2)①當∠CAB的度數為 時,四邊形OEFC是矩形;②若D是弦AC的中點,⊙O的半徑為5,AC=8,則FC的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以直角邊BC為直徑作⊙O、交AB于點D,E為AC的中點,連接DE
(1)求證:DE為⊙O的切線;
(2)已知BC=4.填空.
①當DE= 時,四邊形DOCE為正方形;
②當DE= 時,△BOD為等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.
(1)求袋子中白球的個數;(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,在地面上,支架
是底邊為
的等腰直角三角形,擺動臂長
可繞點
旋轉,擺動臂
可繞點
旋轉,
,
.
(1)在旋轉過程中:
①當三點在同一直線上時,求
的長;
②當三點在同一直角三角形的頂點時,求
的長.
(2)若擺動臂順時針旋轉
,點
的位置由
外的點
轉到其內的點
處,連結
,如圖2,此時
,
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,∠B=60°,AB=6,BC=12.點E是BC上一動點,將△ABE沿直線AE折疊,得到△AFE,則當AF與ABCD的邊垂直時,BE的長為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com