【題目】如圖,過平行四邊形ABCD對角線交點O的直線交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四邊形EFCD周長是( )
A. 16B. 15C. 14D. 13
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P、Q分別從點A、B同時開始移動,點P的速度為1 cm/秒,點Q的速度為2 cm/秒,點Q移動到點C后停止,點P也隨之停止運動下列時間瞬間中,能使△PBQ的面積為15cm 的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,將△DEF如圖擺放,使得∠D的兩條邊分別經過點B和點C.
(1)當將△DEF如圖1擺放時,則∠ABD+∠ACD= 度;
(2)當將△DEF如圖2擺放時,請求出∠ABD+∠ACD的度數,并說明理由.
(3)能否將△DE擺放到某個位置時,使得BD、CD同時平分∠ABC和∠ACB?直接寫出結論 (填“能”或“不能”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某九年級制學校圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數據.圖1是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:
(1)該校對多少學生進行了抽樣調查?
(2)本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數的百分比是多少?
(3)若該校九年級共有200名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡跳繩活動的人數約為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B分別在射線OM、ON上運動(不與點O重合).
(1)如圖1,若∠MON=90°,∠OBA、∠OAB的平分線交于點C,則∠ACB= °;
(2)如圖2,若∠MON=n°,∠OBA、∠OAB的平分線交于點C,求∠ACB的度數;
(3)如圖2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分線交于點D,求∠ACB與∠ADB之間的數量關系,并求出∠ADB的度數;
(4)如圖3,若∠MON=80°,BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點E.試問:隨著點A、B的運動,∠E的大小會變嗎?如果不會,求∠E的度數;如果會,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,海面上B,C兩島分別位于A島的正東和正北方向.一艘船從A島出發,以18海里/時的速度向正北方向航行2小時到達C島,此時測得B島在C島的南偏東43°.求A,B兩島之間的距離.(結果精確到0.1海里)(參考數據:sin43°=0.68,cos43°=0.73,tan43°=0.93)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB∥CD,∠ABC=90°,動點P從A點出發,沿A→D→C→B勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
⑴①AD= , CD= , BC= ; (填空)
②當點P運動的路程x=8時,△ABP的面積為y= ; (填空)
⑵求四邊形ABCD的面積
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在第九章中我們研究了幾種特殊四邊形,請根據你的研究經驗來自己研究一種特殊四邊形——箏形.
初識定義:兩組鄰邊分別相等的四邊形是箏形.
(1)根據箏形的定義,寫出一種你學過的四邊形滿足箏形的定義的是 .
性質研究:
(2)類比你學過的特殊四邊形的性質,通過觀察、測量、折疊、證明等操作活動,對如圖的箏形ABCD(AB=AD,BC=CD)的性質進行探究,以下判斷正確的有 (填序號).
①AC⊥BD;②AC、BD互相平分;
③AC平分∠BAD和∠BCD;
④∠ABC=∠ADC;⑤∠BAD+∠BCD=180°;
⑥箏形ABCD的面積為AC×BD.
(3)在上面的箏形性質中選擇一個進行證明.
性質應用:
(4)直接利用你發現的箏形的性質解決下面的問題:
如圖,在箏形ABCD中,AB=BC,AD=CD,點P是對角線BD上一點,過P分別做AD、CD垂線,垂足分別為點M、N.當箏形ABCD滿足條件 時,四邊形PNDM是正方形?請說明理由.
判定方法:
(5)回憶我們學習過的特殊四邊形的判定方法(如四邊相等的四邊形是菱形),用文字語言寫出箏形的一個判定方法(除定義外): .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com