精英家教網 > 初中數學 > 題目詳情

【題目】已知四邊形和四邊形都是正方形,且

1)如圖1,連接、.求證:;

2)如圖2,如果正方形繞點旋轉到某一位置恰好使得

①求的度數;

②若正方形的邊長是,請求出的面積.

【答案】1)證明見解析;(2)①;②

【解析】

1)先求出△BCG≌△ECGSAS),得出BGDE

2)求出△BCG≌△BCE,得出DEBDBE,所以△BDE是等邊三角形.從而得出∠BDE60°;

3)連接,證明,得到所以為等邊三角形,由,可得,即可求解.

1四邊形是正方形

2)連接

,

是等邊三角形

3)連接,同理可得

所以為等邊三角形

由已知,可得

所以

所以的面積是

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為積極響應新舊動能轉換.提高公司經濟效益.某科技公司近期研發出一種新型高科技設備,每臺設備成本價為30萬元,經過市場調研發現,每臺售價為40萬元時,年銷售量為600;每臺售價為45萬元時,年銷售量為550.假定該設備的年銷售量y(單位:)和銷售單價(單位:萬元)成一次函數關系.

(1)求年銷售量與銷售單價的函數關系式;

(2)根據相關規定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-32),B04),C02).

1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的C;平移△ABC,若A的對應點的坐標為(0,4),畫出平移后對應的

2)若將C繞某一點旋轉可以得到,請直接寫出旋轉中心的坐標;

3)在軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸、軸分別相交于、兩點,點的中點,點、分別為線段上的動點,將沿折疊,使點的對稱點恰好落在線段上(不與端點重合).連接分別交、于點、,連接.

1)求的值;

2)試判斷的位置關系,并加以證明;

3)若,求點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個動點,連接AP、OP,則△AOP面積的最大值為( 。

A. 4 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某大學生創業團隊抓住商機,購進一批干果分裝成營養搭配合理的小包裝后出售,每袋成本3元.試銷期間發現每天的銷售量(袋與銷售單價(元之間滿足一次函數關系,部分數據如表所示,其中3.5≤x≤5.5.另外每天還需支付其他各項費用80元.

銷售單價(

3.5

5.5

銷售量(

280

120

1)請求出之間的函數關系式;

2)設每天的利潤為元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明同學在一次社會實踐活動中,通過對某種蔬菜在1月份至7月份的市場行情進行統計分析后得出如下規律:

①該蔬菜的銷售價(單位:元/千克)與時間(單位:月份)滿足關系 ;

②該蔬菜的平均成本(單位:元/千克)與時間(單位:月份)滿足二次函數關系已知4月份的平均成本為2/千克,6月份的平均成本為1/千克.

1)求該二次函數的解析式;

2)請運用小明統計的結論,求出該蔬菜在第幾月份的平均利潤(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤銷售價平均成本)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于的方程

1)求證:無論為何值,方程總有實數根.

2)設,是方程的兩個根,記,S的值能為2嗎?若能,求出此時的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,RtABC中,∠C90°,DBC邊上一動點,過DDEADABE,AC2,BC4,當D點從C點運動到B點時,點E運動的路徑長為_____

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视