【題目】如圖,以三角形ABC的BC邊上一點O為圓心的圓,經過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連結AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF= ,求⊙O的半徑r.
【答案】
(1)證明:連接OA、OD,
∵D為弧BE的中點,
∴OD⊥BC,
∠DOF=90°,
∴∠D+∠OFD=90°,
∵AC=FC,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD+∠CAF=90°,
∴OA⊥AC,
∵OA為半徑,
∴AC是⊙O切線;
(2)解:∵⊙O半徑是r,
∴OD=r,OF=8-r,
在Rt△DOF中,r2+(8-r)2=( )2,
r=6,r=2(舍),
當r=2時,OB=OE=2,OF=BF-OB=8-2=6>OE,
∴r=2舍去;
即⊙O的半徑r為6.
【解析】(1)連接OA、OD,求出∠D+∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求出∠OAD+∠CAF=90°,根據切線的判定推出即可;(2)OD=r,OF=8-r,在Rt△DOF中根據勾股定理得出方程r2+(8-r)2=( )2 , 求出即可.
【考點精析】根據題目的已知條件,利用切線的判定定理的相關知識可以得到問題的答案,需要掌握切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是學生小金家附近的一塊三角形綠化區的示意圖,為增強體質,他每天早晨都沿著綠化區周邊小路AB、BC、CA跑步(小路的寬度不計).觀測得點B在點A的南偏東30°方向上,點C在點A的南偏東60°的方向上,點B在點C的北偏西75°方向上,AC間距離為400米.問小金沿三角形綠化區的周邊小路跑一圈共跑了多少米?(參考數據: ≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續翻轉2014次,點B的落點依次為B1,B2,B3,…,則B2014的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,對角線相交于點
于點
于點F,連結
,則下列結論:
;
;
;
圖中共有四對全等三角形
其中正確結論的個數是
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知 ABC的三個頂點的坐標分別為A(-1,1), B(-3,1),C(-1,4).
①畫出△ABC關于y軸對稱的△A1B1C1;
②將△ABC繞著點B順時針旋轉90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉過程中所掃過的面積(結果保留 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個反比例函數,
在第一象限內的圖象如圖所示,點P1,P2,P3,…,P2018在反比例函數
圖象上,它們的橫坐標分別是
,
,
,…,
,縱坐標分別是1,3,5,…,共2018個連續奇數,過點P1,P2,P3,…,P2018分別作
軸的平行線,與
的圖象交點依次是Q1(
,
),Q2(
,
),Q3(
,
),…,Q2018(
,
),則
=_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們都知道無限不循環小數是無理數,而無限循環小數是可以化成分數的。例如(3為循環節)是可以化成分數的,方法如下:
令①
則②
②-①得
所以可以化成分數為
請你閱讀上面材料完成下列問題:
(1)(
)化成分數是 .
(2)請你將(
)化為分數.
(3)請你將(
)化為分數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某食品廠從生產的袋裝食品中抽出樣品20袋,檢測每袋的質量是否符合標準,超過或不足的部分分別用正、負數來表示,記錄如下表:
與標準質量的差值 |
|
| 0 | 1 | 3 | 6 |
袋 數 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質量比標準質量多還是少?多或少幾克?
(2)若每袋標準質量為450克,則抽樣檢測的總質量是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】交通工程學理論把在單向道路上行駛的汽車看成連續的液體,并用流量、速度、密度三個概念描述車流的基本特征。其中流量q(輛/小時)指單位時間內通過道路指定斷面的車輛數;速度v(千米/小時)指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長度內的車輛數,為配合大數據治堵行動,測得某路段流量q與速度v之間的部分數據如下表:
速度v(千米/小時) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(輛/小時) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據上表信息,下列三個函數關系式中,刻畫q,v關系最準確的是(只需填上正確答案的序號)① ②
③
(2)請利用(1)中選取的函數關系式分析,當該路段的車流速為多少時,流量達到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請結合(1)中選取的函數關系式繼續解決下列問題:
①市交通運行監控平臺顯示,當 時道路出現輕度擁堵,試分析當車流密度k在什么范圍時,該路段出現輕度擁堵;
②在理想狀態下,假設前后兩車車頭之間的距離d(米)均相等,求流量q最大時d的值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com