精英家教網 > 初中數學 > 題目詳情

【題目】如圖,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF.

【答案】詳見解析.

【解析】

根據已知條件證明AB=CD,AF=CF,證明 Rt△ABF≌Rt△CDE(HL),得BF=DE,進而證明△BFG≌△DEG(AAS),即可證明.

證明∵DE⊥AC,BF⊥AC,

∴∠DEG=∠BFE=90°,

∵AE=CF,AE+EF=CF+EF,AF=CE.

Rt△ABFRt△CDE中,AB=CD,AF=CF,

∴Rt△ABF≌Rt△CDE(HL),

∴BF=DE.

△BFG△DEG,∠BFG=∠DEG,∠BGF=∠DGE,BF=DE

∴△BFG≌△DEG(AAS),

∴FG=EG,即BD平分EF

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.

(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數量關系,并加以證明;

(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明

如圖,FG//CD,∠1=∠3,∠B=50°,求BDE的度數.

:∵FG//CD (已知)

∴∠2=_________(____________________________)

又∵∠1=∠3,

∴∠3=∠2(等量代換)

BC//__________(_____________________________)

∴∠B+________=180°(______________________________)

又∵∠B=50°

∴∠BDE=________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲處表示兩條路的交叉口,乙處也是兩條路的交叉口,如果用(13)表示甲處的位置,那么“(1,3)→(2,3)→(3,3)→(4,3)→(42)→(4,1)→(40)”表示甲處到乙處的一種路線,若圖中一個單位長度表示5Km,請你用上述表示法寫出甲處到乙處的另兩種走法,最短距離是多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下表是根據對初一(1)班的50名同學平時最愛吃的食物的種類進行的問卷調查繪制成的統計表,請填滿缺少的項并回答后面的問題.

肉類

蔬菜類

瓜果類

水產類

男生

22

1

2

女生

4

5

3

頻率

64%

14%

12%

1)選擇適當的統計圖表示男生平時最愛吃的食物的種類情況;

2)就給出的初一(1)班的同學平時最愛吃的食物的種類情況,請你結合自己的年齡特點簡略談談自己的看法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A、B兩市相距150千米,分別從A、B處測得國家級風景區中心C處的方向角如圖所示,風景區區域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個實數根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個整數點(點A在點B左側),且m為正整數,求此拋物線的表達式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點C,點B關于y軸的對稱點為D,設此拋物線在﹣3≤x≤﹣ 之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,等邊△ABC中,ADBC邊上的中線,根據等腰三角形的三線合一特性,AD平分∠BAC,且ADBC,則有∠BAD=30°,BD=CD=AB.于是可得出結論直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據從上面材料中所得到的信息解答下列問題:

(1)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點D,垂足為E,當BD=5cm,B=30°時,求△ACD的周長.

(2)如圖3所示,在△ABC中,AB=AC,A=120°,DBC的中點,DEAB,垂足為E,求BE:EA的值.

(3)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點,且AE=DC,AD、BE交于點P,作BQADQ,若BP=2,求PQ的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视