精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,二次函數y=a(x﹣h)2+的圖象經過原點O(0,0),A(2,0).

(1)寫出該函數圖象的對稱軸;

(2)若將線段OA繞點O逆時針旋轉60°到OA′,試判斷點A′是否為該函數圖象的頂點?請說明理由.

【答案】(1)直線x=1 (2)點A′為拋物線y=﹣(x﹣1)2+的頂點

【解析】

試題分析:(1)把已知點O、A代入函數的解析式可求出h的值h=1,及a=,然后根據二次函數的頂點式的特點判斷出對稱軸;

(2)線段OA繞點O逆時針旋轉60°到OA′,可知OA′=OA=2,A′OA=60°,如圖,作A′Bx軸于點B,根據直角三角形的特點可知sin60°=,cos60°=,因此可求得A′B=OA′sin60°==,OB=OA′cos60°==1,所以A點的坐標為(1,),點A正好是二次函數y=﹣(x﹣1)2+的頂點.

試題解析:解:(1)二次函數y=a(x﹣h)2+的圖象經過原點O(0,0),A(2,0).

拋物線的對稱軸為直線x=1;

點A′是該函數圖象的頂點.理由如下:

如圖,作A′Bx軸于點B

線段OA繞點O逆時針旋轉60°到OA′,

OA′=OA=2,A′OA=60°

在RtA′OB中,

A′B=OA′sin60°==,

OB=OA′cos60°==1.

A′點的坐標為(1,),

點A′為拋物線y=﹣(x﹣1)2+的頂點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點在坐標軸上,兩點的坐標分別是點滿足:軸交于點是邊上一動點,連接,分別與軸,軸交于點

(1)求的值;

(2)若求證:;

(3)若點的縱坐標為則線段HF的長為 .(用含的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某縣舉辦老、中、青三個年齡段五公里競走活動,其人數比為,如圖所示的扇形統計圖表示 上述分布情況,已知老人有人,則下列說法不正確的是( )

A. 老年所占區域的圓心角是B. 參加活動的總人數是

C. 中年人比老年人多D. 老年人比青年人少

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先列表,然后在同一平面直角坐標系內分別描點畫出下列二次函數的圖象,并寫出對稱軸與頂點坐標.

①y=- (x+2)2;②y=- (x-1)2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:拋物線

(1)寫出拋物線的開口方向、對稱軸;

(2)函數y有最大值還是最小值?并求出這個最大(。┲担

(3)設拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果二次函數的二次項系數為1,那么此二次函數可表示為y=x2+px+q,我們稱[p,q]為此函數的特征數,如函數y=x2+2x+3的特征數是[2,3].

(1)若一個函數的特征數為[-2,1],求此函數圖象的頂點坐標;

(2)探究下列問題:

若一個函數的特征數為[4,-1],將此函數的圖象先向右平移1個單位長度再向上平移1個單位長度,求得到的圖象對應的函數的特征數;

若一個函數的特征數為[2,3],問此函數的圖象經過怎樣的平移,才能使得到的圖象對應的函數的特征數為[3,4]?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=(m-1)x2+m2-2m-2的圖象開口向下且經過點(0,1).

(1)求m的值;

(2)求此拋物線的頂點坐標及對稱軸;

(3)當x為何值時,y隨x的增大而增大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市居民用電的電價實行階梯收費,收費標準如下表:

一戶居民每月用電量x(單位:度)

電費價格(單位:元/度)

0x≤200

a

200x≤400

b

x400

0.92

1)已知李叔家四月份用電286度,繳納電費178.76元;五月份用電316度,繳納電費198.56元,請你根據以上數據,求出表格中a,b的值.

2)六月份是用電高峰期,李叔計劃六月份電費支出不超過300元,那么李叔家六月份最多可用電多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系,直線y=2x+2x軸于A,交y軸于 D,

1)直接寫直線y=2x+2與坐標軸所圍成的圖形的面積

2)以AD為邊作正方形ABCD,連接AD,P是線段BD上(不與B,D重合)的一點,在BD上截取PG=,過GGF垂直BD,交BCF,連接AP

問:APPF有怎樣的數量關系和位置關系?并說明理由;

3)在(2)中的正方形中,若∠PAG=45°,試判斷線段PD,PG,BG之間有何關系,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视