【題目】2017年11月11日,張杰參加了某網點的“翻牌抽獎”活動.如圖所示,4張牌上分別寫有對應獎品的價值為10元,15元,20元和“謝謝惠顧”的字樣.
⑴如果隨機翻1張牌,那么抽中有獎的概率為 ,抽中15元及以上獎品的概率為 .
⑵如果隨機翻2張牌,且第一次翻過的牌不再參加下次翻牌,用畫樹狀圖或列表法列出抽獎的所有等可能性情況,并求出獲獎品總值不低于30元的概率.
【答案】(1);
;(2)
.
【解析】試題分析:(1)隨機事件A的概率P(A)=事件A可能出現的結果數÷所有可能出現的結果數,據此計算,求出抽中有獎和15元以上獎品的概率為多少即可;
(2)首先應用樹狀圖法,列舉出隨機翻2張牌,所獲獎品的總值一共有多少種情況;然后用所獲獎品總值不低于30元的情況的數量除以所有情況的數量,求出所獲獎品總值不低于30元的概率為多少即可.
解:(1)3÷4=,1÷2=
,
∴抽中獎的概率為,抽中15元及以上的概率為
;
故答案為: ;
;
(2) 畫出樹狀圖得:
∴由樹狀圖可知,一共有12種等可能性的抽獎結果;其中總值不低于30元的有4種情況. 所獲獎品總值不低于30元的概率==
.
科目:初中數學 來源: 題型:
【題目】如果一個正整數能表示成兩個連續偶數的平方差,那么這個正整數為“神秘數”.
如:
因此,4,12,20這三個數都是神秘數.
(1)28和2012這兩個數是不是神秘數?為什么?
(2)設兩個連續偶數為和
(其中
為非負整數),由這兩個連續偶數構造的神秘數是4的倍數,請說明理由.
(3)兩個連續奇數的平方差(取正數)是不是神秘數?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊三角形土地,它的底邊BC=100米,高AH=80米,某單位要沿著地邊BC修一座底面是矩形DEFG的大樓,D、G分別在AB、AC的邊上,問當這個矩形面積最大時,它的長與寬各是多少米?面積最大為多少平方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:點B、E、F、C在同一直線上,∠A=∠D,BE=CF,且AB∥CD.求證:AF∥ED
證明:∵BE=FC
∴BE+EF=FC+EF(____________________________)
即:___________
∵AB∥CD
∴∠B=∠C(_________________________)
在△ABF和△DCE中,
∠A=∠D, ∠B=∠C, BF=CE
∴△ABF≌△DCE(________)
∴∠AFB=∠DEC(_________________________________)
∴AF∥ED(__________________________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,直線a為對稱軸,A和C都在對稱軸上.
(1)△ABC以直線a為對稱軸作△AB1C;
(2)若∠BAC=30°,則∠BAB1=______°;
(3)求△ABB1的面積等于______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規律進行下去,A10B10C10D10E10F10的邊長為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級有800名學生,在一次跳繩模擬測試中,從中隨機抽取部分學生,根據其測試成績制作了下面兩個統計圖,請根據相關信息,解答下列問題:
(1)本次抽取到的學生人數為______,扇形統計圖中的值為______.
(2)本次調查獲取的樣本數據的眾數是_____(分),中位數是_____(分).
(3)根據樣本數據,估計我校八年級模擬體測中得12分的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,E是等腰Rt△ABC邊AC上的一個動點(點E與A、C不重合),以CE為一邊在Rt△ABC作等腰Rt△CDE,連結AD,BE.我們探究下列圖中線段AD,、線段BE 的長度關系及所在直線的位置關系:
(1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
②將圖1中的等腰Rt△CDE繞著點C按順時針方向旋轉任意角度,得到如圖2、如圖3情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中等腰直角三角形改為直角三角形(如圖4—6),且AC=a,BC=b,CD=ka,CE=kb (ab,k
0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由.
(3)在第(2)題圖5中,連結BD、AE,且a=4,b=3,k=,求BD2+AE2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數字等式,例如圖1,可以得到(a+2b)(a+b)=a2+3ab+2b2.請解答下問題:
(1)寫出圖2中所表示的數學等式_____;
(2)利用(1)中所得到的結論,解決下面的問題:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;
(3)小明同學用2張邊長為a的正方形、3張邊長為b的正方形、5張邊長為a、b的長方形紙片拼出了一個長方形,那么該長方形較長一邊的邊長為多少?
(4)小明同學又用x張邊長為a的正方形,y張邊長為b的正方形,z張邊長分別為a、b的長方形紙片拼出了一個面積為(25a+7b)(2a+5b)長方形,求9x+10y+6.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com