【題目】完成下列小題
(1)如圖①,若∠B+∠D=∠BED,試猜想AB與CD的位置關系,并說明理由。
(2)如圖②,要想得到AB∥CD,則∠1、∠2、∠3之間應滿足怎樣的位置關系?請探索。
【答案】
(1)AB∥CD.在∠BED的內部作∠BEF=∠B, ∴AB∥EF. ∵∠B+∠D=∠BED, ∴∠BE F+∠FED=∠BED, ∴∠FED=∠D, ∴EF∥CD, ∴A B∥CD.
(2) 提示:以點E為頂點,EA為一邊,作∠AEF與∠1互補,得EF∥AB,使∠FEC=∠3=180°,即180°-∠1+∠2+∠3=180°,∠2+∠3=∠1時,EF∥CD. ∵EF∥AB,EF∥CD, ∴AB∥CD.
【解析】(1)AB∥CD.在∠BED的內部作∠BEF=∠B, ∴AB∥EF. ∵∠B+∠D=∠BED,∴∠BE F+∠FED=∠BED, ∴∠FED=∠D, ∴EF∥CD, ∴A B∥CD.(2)提示:以點E為頂點,EA為一邊,作∠AEF與∠1互補,得EF∥AB,使∠FEC=∠3=180°,即180°-∠1+∠2+∠3=180°,∠2+∠3=∠1時,EF∥CD. ∵EF∥AB,EF∥CD, ∴AB∥CD.
【考點精析】本題主要考查了平行線的判定的相關知識點,需要掌握同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,已知A(1,2),B(3,1),C(4,3).
(1)作△ABC關于y軸的對稱圖形△A1B1C1,寫出點C1的坐標;
(2)直線m平行于x軸,在直線m上求作一點P使得△ABP的周長最小,請在圖中畫出P點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,BF、DE相交于點A,BG交BF于點B,交AC于點C.
(1)指出ED、BC被BF所截的同位角,內錯角,同旁內角;
(2)指出ED、BC被AC所截的內錯角,同旁內角;
(3)指出FB、BC被AC所截的內錯角,同旁內角.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com