【題目】(1)感知:如圖①.AB=AD,AB⊥AD,BF⊥AF于點F,DG⊥AF于點G.求證:△ADG≌△BAF;
(2)拓展:如圖②,點B,C在∠MAN的邊AM,AN上,點E,F在∠MAN在內部的射線AD上,∠1,∠2分別是△ABE,△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)應用:如圖③,在△ABC中,AB=AC,AB>BC,點在D邊BC上,CD=2BD,點E,F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為12,則△ABE與△CDF的面積之和為 .
【答案】(1)證明見解析(2)證明見解析(3)8
【解析】
(1)根據同角的余角相等得到∠DAG=∠B,利用AAS定理證明△ADG≌△BAF;
(2)證明∠ABE=∠CAF,利用AAS定理證明△ADG≌△BAF;
(3)根據三角形的面積公式求出S△ADC,根據全等三角形的性質,結合圖形計算即可.
(1)證明:∵AB⊥AD,BF⊥AF,
∴∠DAG+∠BAF=90°,∠B+∠BAF=90°,
∴∠DAG=∠B,
在△ADG和△BAF中,
,
∴△ADG≌△BAF(AAS);
(2)∵∠1=∠2,
∴∠AEB=∠CFA,
∠1=∠ABE+∠BAE,∠BAC=∠CAF+∠BAE,∠1=∠BAC,
∴∠ABE=∠CAF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(AAS);
(3)∵CD=2BD,
∴S△ADC=S△ABC=8,
由(2)得,△ABE≌△CAF,
∴△ABE與△CDF的面積之和=△CAF與△CDF的面積之和=S△ADC=8,
故答案為:8.
科目:初中數學 來源: 題型:
【題目】我們根據指數運算,得出了一種新的運算,如表是兩種運算對應關系的一組實例:
指數運算 | 21=2 | 22=4 | 23=8 | … | 31=3 | 32=9 | 33=27 | … |
新運算 | log22=1 | log24=2 | log28=3 | … | log33=1 | log39=2 | log327=3 | … |
根據上表規律,某同學寫出了三個式子:①log216=4,②log525=5,③log2 =﹣1.其中正確的是( 。
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點D,射線PD交射線CA于點E.
(1)若點E在線段CA的延長線上,設BP=x,AE=y,求y關于x的函數關系式,并寫出x的取值范圍.
(2)當BP=2 時,試說明射線CA與⊙P是否相切.
(3)連接PA,若S△APE= S△ABC , 求BP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校男子足球隊的年齡分布如圖所示,則根據圖中信息可知這些隊員年齡的平均數,中位數分別是( )
A.15.5,15.5
B.15.5,15
C.15,15.5
D.15,15
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校計劃購買一批課外讀物,為了了解學生對課外讀物的需求情況,學校進行了一次“我最喜愛的課外讀物”的調查,設置了“文學”、“科普”、“藝術”和“其他”四個類別,規定每人必須并且只能選擇其中一類,現從全體學生的調查表中隨機抽取了部分學生的調查表進行統計,并把統計結果繪制了如圖所示的兩幅不完整的統計圖,則在扇形統計圖中,藝術類讀物所在扇形的圓心角是度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班10名學生的校服尺寸與對應人數如表所示:
尺寸(cm) | 160 | 165 | 170 | 175 | 180 |
學生人數(人) | 1 | 3 | 2 | 2 | 2 |
則這10名學生校服尺寸的眾數和中位數分別為( )
A.165cm,165cm
B.165cm,170cm
C.170cm,165cm
D.170cm,170cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次中學生田徑運動會上,根據參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統計圖①和圖②,請根據相關信息,解答下列問題:
(1)圖1中a的值為;
(2)求統計的這組初賽成績數據的平均數、眾數和中位數;
(3)根據這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績為1.65m的運動員能否進入復賽.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖示我國漢代數學家趙爽在注解《周脾算經》時給出的“趙爽弦圖”,圖中的四個直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C是反比例函數y= (k<0)圖象上三點,作直線l,使A、B、C到直線l的距離之比為3:1:1,則滿足條件的直線l共有( )
A.4條
B.3條
C.2條
D.1條
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com