【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標有數字1,2,3,4.現每次有放回地從中任意取出一個小球,直到標有偶數的球都取到過就停止.小明用隨機模擬的方法估計恰好在第4次停止摸球的概率,利用計算機軟件產生隨機數,每1組中有4個數字,分別表示每次摸球的結果,經隨機模擬產生了以下21組隨機數:由此可以估計恰好在第4次停止摸球的概率為( )
1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312
2412 1413 4331 2234 4422 3241 4331 4234
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】某市實驗中學數學教研組,在高三理科一班進行了一次“采用兩種不同方式進行答卷”的考試實驗,第一種做卷方式:按從前往后的順序依次做;第二種做卷方式:先做簡單題,再做難題.為了比較這兩種做卷方式的效率,選取了名學生,將他們隨機分成兩組,每組
人.第一組學生用第一種方式,第二組學生用第二種方式,根據學生的考試分數(單位:分)繪制了莖葉圖如圖所示.
若
分(含
分)以上為優秀,根據莖葉圖估計兩種做卷方式的優秀率;
設
名學生考試分數的中位數為
,根據莖葉圖填寫下面的
列聯表:
超過中位數 | 不超過中位數 | 合計 | |
第一種做卷方式 | |||
第一種做卷方式 | |||
合計 |
根據列聯表,能否有的把握認為兩種做卷方式的效率有差異?
附:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,對于函數
有下述四個結論:
①函數在其定義域上為增函數;
②對于任意的,都有
成立;
③有且僅有兩個零點;
④若在點
處的切線也是
的切線,則
必是
零點.
其中所有正確的結論序號是( )
A.①②③B.①②C.②③④D.②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥側面BCC1B1,AC=AB1.
(1)求證:平面ABC1⊥平面AB1C;
(2)若AB=BC=2,∠BCC1=60°,求二面角B﹣AC1﹣B1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正△ABC邊長為3,點M,N分別是AB,AC邊上的點,AN=BM=1,如圖1所示.將△AMN沿MN折起到△PMN的位置,使線段PC長為,連接PB,如圖2所示.
(Ⅰ)求證:平面PMN⊥平面BCNM;
(Ⅱ)若點D在線段BC上,且BD=2DC,求二面角M﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點M是棱長為2的正方體ABCD-A1B1C1D1的棱AD的中點,點P在面BCC1B1所在的平面內,若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點P到點C1的最短距離是( )
A.B.
C.1D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com