精英家教網 > 高中數學 > 題目詳情

已知數列{an}滿足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求證:數列是等差數列并求數列{an}的通項公式;
(2)設bn=anan+1,求證:b1+b2+…+bn< .

(1)見解析(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在數列中,其前項和為,滿足.
(1)求數列的通項公式;
(2)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設{an}是公比為正數的等比數列,a1=2,a3=a2+4,
(1)求{an}的通項公式;
(2)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等差數列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項和Sn最大時n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列是等差數列,且
(1)求數列的通項公式  (2)令,求數列前n項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

知數列{an}是首項為,公比為的等比數列,設bn+15log3ant,常數t∈N*.
(1)求證:{bn}為等差數列;
(2)設數列{cn}滿足cnanbn,是否存在正整數k,使ck,ck+1,ck+2按某種次序排列后成等比數列?若存在,求k,t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知Sn是等比數列{an}的前n項和,S4,S2,S3成等差數列,且a2+a3+a4=-18.
(1)求數列{an}的通項公式;
(2)是否存在正整數n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若正數項數列的前項和為,首項,點,在曲線上.
(1)求;
(2)求數列的通項公式;
(3)設,表示數列的前項和,若恒成立,求及實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列{an}滿足an+1=2an+n2-4n+1.
(1)若a1=3,求證:存在(a,b,c為常數),使數列{an+f(n)}是等比數列,并求出數列{an}的通項公式;
(2)若an是一個等差數列{bn}的前n項和,求首項a1的值與數列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视