【題目】三國時期吳國數學家趙爽所注《周牌算經》中給出了勾股定理的絕妙證明.右面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實黃實,利用勾
股
(股
勾)
朱實
黃實
弦實,化簡,得勾
股
弦
,設勾股中勾股比為
,若向弦圖內隨機拋擲
顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘顆數大約為( )(參考數據
,
)
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】設點,
的坐標分別為
,
,直線
,
相交于點
,且它們的斜率之積為-2,設點
的軌跡是曲線
.
(1)求曲線的方程;
(2)已知直線與曲線
相交于不同兩點
、
(均不在坐標軸上的點),設曲線
與
軸的正半軸交于點
,若
,垂足為
且
,求證:直線
恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4 坐標系與參數方程
已知曲線的極坐標方程為
,曲線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數).
(Ⅰ)若曲線與
無公共點,求正實數
的取值范圍;
(Ⅱ)若曲線的參數方程中,
,且曲線
與
交于
,
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發,先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標系中,設軍營所在平面區域為
,河岸線所在直線方程為
.假定將軍從點
處出發,只要到達軍營所在區域即回到軍營,則將軍可以選擇最短路程為_____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=3,BC=3,沿對角線BD將△BCD折起,使點C移到C′點,且C′點在平面ABD上的射影O恰在AB上.
(1)求證:BC′⊥平面AC′D;
(2)求點A到平面BC′D的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知小張每次射擊命中十環的概率都為40%,現采用隨機模擬的方法估計小張三次射擊恰有兩次命中十環的概率,先由計算器產生0到9之間取整數值的隨機數,指定2,4,6,8表示命中十環,0,1,3,5,7,9表示未命中十環,再以每三個隨機數為一組,代表三次射擊的結果,經隨機模擬產生了如下20組隨機數:
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據此估計,小張三次射擊恰有兩次命中十環的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線的頂點在坐標原點,焦點在
軸負半軸上,過點
作直線
與拋物線相交于
兩點,且滿足
.
(1)求直線和拋物線的方程;
(2)當拋物線上一動點從點
運動到點
時,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
過原點且傾斜角為
.以坐標原點
為極點,
軸正半軸為極軸建立坐標系,曲線
的極坐標方程為
.在平面直角坐標系
中,曲線
與曲線
關于直線
對稱.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線過原點且傾斜角為
,設直線
與曲線
相交于
,
兩點,直線
與曲線
相交于
,
兩點,當
變化時,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com