【題目】已知函數 ,g(x)=x+lnx,其中a>0.
(1)若x=1是函數h(x)=f(x)+g(x)的極值點,求實數a的值;
(2)若對任意的x1 , x2∈[1,e](e為自然對數的底數)都有f(x1)≥g(x2)成立,求實數a的取值范圍.
【答案】
(1)解:∵ ,g(x)=x+lnx,
∴ ,其定義域為(0,+∞),
∴ .
∵x=1是函數h(x)的極值點,
∴h′(1)=0,即3﹣a2=0.
∵a>0,∴
經檢驗當 時,x=1是函數h(x)的極值點,
∴
(2)解:對任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等價于
對任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.
當x∈[1,e]時, .
∴函數g(x)=x+lnx在[1,e]上是增函數.
∴[g(x)]max=g(e)=e+1.
∵ ,且x∈[1,e],a>0.
①當0<a<1且x∈[1,e]時, ,
∴函數 在[1,e]上是增函數,
∴ .
由1+a2≥e+1,得a≥ ,
又0<a<1,∴a不合題意;
②當1≤a≤e時,
若1≤x<a,則 ,
若a<x≤e,則 .
∴函數 在[1,a)上是減函數,在(a,e]上是增函數.
∴[f(x)]min=f(a)=2a.
由2a≥e+1,得a≥ ,
又1≤a≤e,∴ ≤a≤e;
③當a>e且x∈[1,e]時, ,
∴函數 在[1,e]上是減函數.
∴ .
由 ≥e+1,得a≥
,
又a>e,∴a>e;
綜上所述:a的取值范圍為
【解析】(1)通過 、x=1是函數h(x)的極值點及a>0,可得
,再檢驗即可; (2)通過分析已知條件等價于對任意的x1 , x2∈[1,e]都有[f(x)]min≥[g(x)]max . 結合當x∈[1,e]時及
可知[g(x)]max=g(e)=e+1.利用
,且x∈[1,e],a>0,分0<a<1、1≤a≤e、a>e三種情況討論即可.
【考點精析】利用利用導數研究函數的單調性和函數的極值與導數對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數學 來源: 題型:
【題目】下列命題是真命題的是( )
A.a>b是ac2>bc2的充要條件
B.a>1,b>1是ab>1的充分條件
C.?x0∈R,e ≤0
D.若p∨q為真命題,則p∧q為真
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內切圓方程為
.
(1)求橢圓的方程;
(2)若拋物線的焦點與橢圓
的一個焦點
重合,直線
與拋物線
交于兩點
,且
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內切圓方程為
.
(1)求橢圓的方程;
(2)若拋物線的焦點與橢圓
的一個焦點
重合,直線
與拋物線
交于兩點
,且
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點E,F分別為AB和PD中點. (Ⅰ)求證:直線AF∥平面PEC;
(Ⅱ)求PC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩個研發小組,他們研發新產品成功的概率分別為 和
.現安排甲組研發新產品A,乙組研發新產品B,設甲、乙兩組的研發相互獨立. (Ⅰ)求至少有一種新產品研發成功的概率;
(Ⅱ)若新產品A研發成功,預計企業可獲利潤120萬元;若新產品B研發成功,預計企業可獲利潤100萬元,求該企業可獲利潤的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com