設函數f(x)=x2+aln(x+1)有兩個極值點x1,x2,且x1<x2.
(1)求實數a的取值范圍;
(2)當a=時,判斷方程f(x)=-
的實數根的個數,并說明理由.
科目:高中數學 來源: 題型:解答題
設定義在(0,+∞)上的函數f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(1,f(1))處的切線方程為y=x,求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設a為實數,函數f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調區間及極值;
(2)求證:當a>ln2-1且x >0時,ex>x2-2ax+1
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數.其中
.
(1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(2)若f(x)≤g(x)-1對任意x>0恒成立,求實數的值;
(3)當<0時,對于函數h(x)=f(x)-g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=+a,g(x)=aln x-x(a≠0).
(1)求函數f(x)的單調區間;
(2)求證:當a>0時,對于任意x1,x2∈,總有g(x1)<f(x2)成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(
為常數),直線
與函數
、
的圖象都相切,且
與函數
圖象的切點的橫坐標為
.
(1)求直線的方程及
的值;
(2)若 [注:
是
的導函數],求函數
的單調遞增區間;
(3)當時,試討論方程
的解的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定義F(x,y)=(1+x)y,x,y∈(0,+∞).令函數f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),設曲線C1在點A,B之間的曲線段與線段OA,OB所圍成圖形的面積為S,求S的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com