精英家教網 > 高中數學 > 題目詳情

【題目】已知向量 的夾角為120°,且| |=2,| |=3,則向量2 +3 在向量2 + 方向上的投影為(
A.
B.
C.
D.

【答案】A
【解析】解:向量 , 的夾角為120°,且| |=2,| |=3,
所以|2 +3 |2=4 2+12 +9 2=16+12| || |cos120°+81=61,|2 +3 |=
又|2 + |2=4 +4 + =16+4×3×2cos120°+9=13,
所以|2 + |= ,
則cos<2 +3 ,2 + >= = =
所以向量2 +3 在向量2 + 方向上的投影為|2 +3 |cos<2 +3 ,2 + >= =
故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數y=ax+b的部分圖象如圖所示,則( 。

A.0<a<1,﹣1<b<0
B.0<a<1,0<b<1
C.a>1,﹣1<b<0
D.a>1,0<b<1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了讓觀賞游玩更便捷舒適,常州恐龍園推出了代步工具租用服務.已知有腳踏自行車與電動自行車兩種車型,采用分段計費的方式租用.型車每分鐘收費元(不足分鐘的部分按分鐘計算),型車每分鐘收費元(不足分鐘的部分按分鐘計算),現有甲乙丙丁四人,分別相互獨立地到租車點租車騎行(各租一車一次),設甲乙丙丁不超過分鐘還車的概率分別為,并且四個人每人租車都不會超過分鐘,甲乙丙均租用型車,丁租用型車.

(1)求甲乙丙丁四人所付的費用之和為25元的概率;

(2)求甲乙丙三人所付的費用之和等于丁所付的費用的概率;

(3)設甲乙丙丁四人所付費用之和為隨機變量,求的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若一條直線a與平面α內的一條直線b所成的角為30°,則下列說法正確的是(  )

A. 直線a與平面α所成的角為30° B. 直線a與平面α所成的角大于30°

C. 直線a與平面α所成的角小于30° D. 直線a與平面α所成的角不超過30°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,則方程實數根的個數為 ( )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調性;
(2)若m>0,g(x)=f(x)+ 存在兩個極值點x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下關于線性回歸的判斷,正確的個數是(  )

①若散點圖中所有點都在一條直線附近,則這條直線為回歸直線;

②散點圖中的絕大多數都線性相關,個別特殊點不影響線性回歸,如圖中的A,B,C點;

③已知直線方程為=0.50x-0.81,則x=25時,y的估計值為11.69;

④回歸直線方程的意義是它反映了樣本整體的變化趨勢.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= +x.
(1)若函數f(x)的圖象在(1,f(1))處的切線經過點(0,﹣1),求a的值;
(2)是否存在負整數a,使函數f(x)的極大值為正值?若存在,求出所有負整數a的值;若不存在,請說明理由;
(3)設a>0,求證:函數f(x)既有極大值,又有極小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據:

(1)請畫出上表數據的散點圖;

(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(2)求出的線性回歸方程,預測技改后生產100噸甲產品比技改前少消耗多少噸標準煤.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视