【題目】已知拋物線的焦點為
,過
的直線交拋物線于
,
兩點
(1)若以,
為直徑的圓的方程為
,求拋物線
的標準方程;
(2)過,
分別作拋物線的切線
,
,證明:
,
的交點在定直線上.
科目:高中數學 來源: 題型:
【題目】已知橢圓,拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,從每條曲線上各取兩個點,其坐標分別是
,
,
,
.
()求
,
的標準方程.
()過點
的直線
與橢圓
交于不同的兩點
,
,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換得到曲線,設M(x,y)為
上任意一點,求
的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解共享單車的使用情況,隨機問卷50名使用者,然后根據這50名的問卷評分數據,統計得到如圖所示的頻率分布直方圖,其統計數據分組區間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值;
(2)求這50名問卷評分數據的中位數;
(3)估計樣本的平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的兩個焦點分別為
,
,點P是橢圓上的任意一點,且
的最大值為4,橢圓C的離心率與雙曲線
的離心率互為倒數.
Ⅰ
求橢圓C的方程;
Ⅱ
設點
,過點P作兩條直線
,
與圓
相切且分別交橢圓于M,N,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三年級有500名學生,為了了解數學科的學習情況,現從中隨機抽出若干名學生在一次測試中的數學成績,制成如下頻率分布表:
分組 | 頻數 | 頻率 |
12 | ||
4 | ||
合計 |
根據上面圖表,求
處的數值
在所給的坐標系中畫出
的頻率分布直方圖;
根據題中信息估計總體平均數,并估計總體落在
中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為200元,低于100箱按原價銷售;不低于100箱通過雙方議價,買方能以優惠成交的概率為0.6,以優惠
成交的概率為0.4.
(1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達成的成交價相互獨立,求甲單位優惠比例不低于乙單位優惠比例的概率;
(2)某單位需要這種零件650箱,求購買總價的數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com