精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線的一條切線過點.

(Ⅰ)求的取值范圍;

(Ⅱ)若.

①討論函數的單調性;

②當時,求證:.

【答案】(1);(2)①見解析.②見解析.

【解析】

(1) 求出,設切點為,則切線方程為由切線過點,可得,利用導數可得的最大值,從而可得結果;(2)①求出,分四種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區間,求得的范圍,可得函數的減區間;②要證明,只需證明,而,所以成立.

1

設切點為,則切線方程為,

∵切線過點,∴,

,

,則,令,則

,∴.

(2)當時,,∵,

,

.

①(i)當時,在區間上是減函數,在區間上是增函數;

(ii)當時,在區間上是減函數,在區間,上是增函數;

(iii)當時,在區間上是增函數;

(iv)當時,在區間上是減函數,在區間,上是增函數.

②證明:當時,,要證明,只需證明

,所以成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,為實數.

1)當時,判斷并證明函數在區間上的單調性;

2)是否存在實數,使得在閉區間上的最大值為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知直三棱柱的側面是正方形,點是側面的中心,是棱的中點

(1)求證:平面;

(2)求證:平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中N,≥2,且R.

(1)當,時,求函數的單調區間;

(2)當時,令,若函數有兩個極值點,,且,求的取值范圍;

(3)當時,試求函數的零點個數,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在平面直角坐標系中,曲線的參數方程為為參數),過點且傾斜角為的直線交曲線兩點.

(Ⅰ)求曲線的直角坐標方程和直線的參數方程;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】支付寶作為一款移動支付工具,在日常生活中起到了重要的作用.巴蜀中學高2018屆學生為了調查支付寶在人群中的使用情況,在街頭隨機對名市民進行了調查,結果如下.

(1)對名市民按年齡以及是否使用支付寶進行分組,得到以下表格,試問能否有的把握認為“使用支付寶與年齡有關”?

使用支付寶

不使用支付寶

合計

歲以上

歲以下

合計

(2)現采用分層抽樣的方法,從被調查的歲以下的市民中抽取了位進行進一步調查,然后從這位市民中隨機抽取位,求至少抽到位“使用支付寶”的市民的概率;

(3) 為了鼓勵市民使用支付寶,支付寶推出了“獎勵金”活動,每使用支付寶支付一次,分別有的概率獲得元獎勵金,每次支付獲得的獎勵金情況互不影響.若某位市民在一周使用了次支付寶,記為這一周他獲得的獎勵金數,求的分布列和數學期望.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45/m,新墻的造價為180/m,設利用的舊墻的長度為x(單位:元)。

)將y表示為x的函數;

)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數f(x)R上單調遞增,求實數a的取值范圍;

(3)是否存在實數a,使不等式f(x)≥2x3對任意xR恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视