【題目】已知函數.
(1)討論的單調區間;
(2)當時,證明:
.
科目:高中數學 來源: 題型:
【題目】為半橢圓
的左、右兩個頂點,
為上焦點,將半橢圓和線段
合在一起稱為曲線
(1)求的外接圓圓心的坐標
(2)過焦點的直線
與曲線
交于
兩點,若
,求所有滿足條件的直線
的方程
(3)對于一般的封閉曲線,曲線上任意兩點距離的最大值稱為該曲線的“直徑”,如圓的“直徑”就是通常的直徑,橢圓的“直徑”就是長軸的長,求該曲線的“直徑”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x,y的方程x2+y2﹣4x+4y+m=0表示一個圓.
(1)求實數m的取值范圍;
(2)若m=4,過點P(0,2)的直線l與圓相切,求出直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓.
(1)若過點的直線l與橢圓C恒有公共點,求實數a的取值范圍;
(2)若存在以點B(0,2)為圓心的圓與橢圓C有四個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓P恒過定點,且與直線
相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,橢圓
的離心率為
是橢圓E的右焦點,直線AF的斜率為2,O為坐標原點.
(1)求E的方程;
(2)設過點且斜率為k的直線
與橢圓E交于不同的兩M、N,且
,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:方程x2+y2﹣4x+m2=0表示圓:q:方程1(m>0)表示焦點在y軸上的橢圓.
(1)若p為真命題,求實數m的取值范圍;
(2)若命題p、q有且僅有一個為真,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com