【題目】選修4-4:坐標系與參數方程
在直角坐標系xOy中,曲線C1的參數方程為 (α為參數,﹣π<α<0),曲線C2的參數方程為
(t為參數),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1的極坐標方程和曲線C2的普通方程;
(2)射線θ=﹣ 與曲線C1的交點為P,與曲線C2的交點為Q,求線段PQ的長.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(Ⅰ)作出函數f(x)的圖象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且b,c是關于x的一元二次方程x2+mx﹣a2+b2+c2=0的兩根.
(1)求角A的大;
(2)已知a= ,設B=θ,△ABC的面積為y,求y=f(θ)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(Ⅰ)求橢圓C的標準方程和長軸長;
(Ⅱ)設F為橢圓C的左焦點,P為直線x=﹣3上任意一點,過點F作直線PF的垂線交橢圓C于M,N,記d1 , d2分別為點M和N到直線OP的距離,證明:d1=d2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分圖象如圖所示,將函數f(x)的圖象向左平移m(m>0)個單位后,得到的圖象關于點(
,﹣1)對稱,則m的最小值是( )
A.
B.
C. π
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四菱錐P﹣ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求證:PA⊥AB;
(II)求直線AD與平面PCD所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P是橢圓C上任一點,點P到直線l1:x=﹣2的距離為d1 , 到點F(﹣1,0)的距離為d2 , 且 =
.直線l與橢圓C交于不同兩點A、B(A,B都在x軸上方),且∠OFA+∠OFB=180°.
(1)求橢圓C的方程;
(2)當A為橢圓與y軸正半軸的交點時,求直線l方程;
(3)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com