【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個最高點的坐標為( ,
),由此點到相鄰最低點間的曲線與x軸交于點(
π,0),φ∈(﹣
,
).
(1)求這條曲線的函數解析式;
(2)求函數的單調增區間.
【答案】
(1)解:依題意知,A= ,
T=
π﹣
=π,T=4π,
∴w= =
,
由 ×
+φ=2kπ+
(k∈Z)得:
φ=2kπ+ (k∈Z),又φ∈(﹣
,
),
∴φ= ,
∴這條曲線的函數解析式為y= sin(
x+
)
(2)解:由2kπ﹣ ≤
x+
≤2kπ+
(k∈Z)得:
4kπ﹣ ≤x≤4kπ+
(k∈Z),
∴函數的單增區間是[4kπ﹣ ,4kπ+
](k∈Z)
【解析】(1)依題意知,A= ,
T=π,易求w=
;再由
×
+φ=2kπ+
(k∈Z),φ∈(﹣
,
)可求得φ,從而可得這條曲線的函數解析式;(2)利用正弦函數的單調性,由2kπ﹣
≤
x+
≤2kπ+
(k∈Z)可求得函數的單調增區間.
科目:高中數學 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且 a=2csinA.
(1)確定∠C的大;
(2)若c= ,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(ex , lnx+k),
=(1,f(x)),
∥
(k為常數,e是自然對數的底數),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調區間;
(2)已知函數g(x)=﹣x2+2ax(a為正實數),若對任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐 A﹣BCDE中,側面△ADE為等邊三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M為D E的中點,F為AC的中點,且AC=4.
(1)求證:平面 ADE⊥平面BCD;
(2)求證:FB∥平面ADE;
(3)求四棱錐A﹣BCDE的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當直線l被圓C截得的弦長為 時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發展共享單車隨機調查了50人,他們年齡的分布及支持發展共享單車的人數統計如下表:
年齡 | ||||||
受訪人數 | 5 | 6 | 15 | 9 | 10 | 5 |
支持發展共享單車人數 | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在
的被調查人中隨機選取一人進行調查,求選中的3人中支持發展共享單車的人數為2人的概率.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com