【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發展共享單車隨機調查了50人,他們年齡的分布及支持發展共享單車的人數統計如下表:
年齡 | ||||||
受訪人數 | 5 | 6 | 15 | 9 | 10 | 5 |
支持發展共享單車人數 | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在
的被調查人中隨機選取一人進行調查,求選中的3人中支持發展共享單車的人數為2人的概率.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
.
【答案】(Ⅰ)不能在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系;(Ⅱ) .
【解析】試題分析:(1)將數據代入,計算出
,與參考數據比較得出結論:不能,(2)年齡在
的被調查人共5個,利用枚舉法得到隨機選取兩人的總事件數共10個.其中有4人支持,1人不支持發展共享單車,選出恰好這兩人都支持的事件數,最后根據古典概型概率公式求解.
試題解析:解:(Ⅰ)根據所給數據得到如下列聯表:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | 30 | 10 | 40 |
不支持 | 5 | 5 | 10 |
合計 | 35 | 15 | 50 |
根據列聯表中的數據,得到
的觀測值為
.
∴不能在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系.
(Ⅱ)“對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持發展共享單車”記為事件
,
對年齡在的5個受訪人中,有4人支持,1人不支持發展共享單車,分別記為
.則從這5人中隨機抽取2人的基本事件為:
,
,
img src="http://thumb.zyjl.cn/Upload/2017/12/29/14/2a74aad1/SYS201712291400000260820553_DA/SYS201712291400000260820553_DA.015.png" width="108" height="27" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
.共10個.
其中,恰好抽取的兩人都支持發展共享單車的基本事件包含.共6個.
∴.
∴對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持發展共享單車的概率是
.
科目:高中數學 來源: 題型:
【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個最高點的坐標為( ,
),由此點到相鄰最低點間的曲線與x軸交于點(
π,0),φ∈(﹣
,
).
(1)求這條曲線的函數解析式;
(2)求函數的單調增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設小明訂了一份報紙,送報人可能在早上6:30—7:30之間把報紙送到,小明離家的時間在早上7:00—8:00之間,則他在離開家之前能拿到報紙的概率( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F分別是CC1 , BC的中點.
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|3≤3x≤27}, .
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2﹣3x,則函數g(x)=f(x)﹣x+3的零點的集合為( )
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當|MN|=2 時,求直線l方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺中,
與
分別是棱長為1與2的正三角形,平面
平面
,四邊形
為直角梯形,
,
,
為
中點,
.
(Ⅰ)是否存在實數使得
平面
?若存在,求出
的值;若不存在,請說明理由;
(Ⅱ)在 (Ⅰ)的條件下,求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一枚質地均勻的骰子先后拋擲兩次,若第一次朝上一面的點數為a,第二次朝上一面的點數為b,則函數y=ax2﹣2bx+1在(﹣∞,2]上為減函數的概率是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com