【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F分別是CC1 , BC的中點.
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.
【答案】證明:(Ⅰ)由條件知AF⊥平面CCBB1 , ∴AF⊥B1F, 由∠BAC=90°,且AB=AA1=1,得 ,EF=
,
,
∴ ,即B1F⊥EF,又∵EF∩AF=F,
∴B1F⊥平面AEF;
(Ⅱ)解:由已知可得,AF= ,且由(Ⅰ)知AF⊥FE,
∴ ,
∴ .
【解析】(Ⅰ)證明AF⊥B1F,B1F⊥EF,然后證明B1F⊥平面AEF;(Ⅱ)由(Ⅰ)知,B1F⊥平面AEF,然后利用等積法求得三棱錐E﹣AB1F的體積.
【考點精析】關于本題考查的直線與平面垂直的判定,需要了解一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知向量 =(ex , lnx+k),
=(1,f(x)),
∥
(k為常數,e是自然對數的底數),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調區間;
(2)已知函數g(x)=﹣x2+2ax(a為正實數),若對任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 asinA=(
b﹣c)sinB+(
c﹣b)sinC.
(1)求角A的大。
(2)若a= ,cosB=
,D為AC的中點,求BD的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos2(x﹣ )﹣
sin2x+1
(Ⅰ)求f(x)的單調遞增區間;
(Ⅱ)當x∈( ,
)時,若f(x)≥log2t恒成立,求 t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發展共享單車隨機調查了50人,他們年齡的分布及支持發展共享單車的人數統計如下表:
年齡 | ||||||
受訪人數 | 5 | 6 | 15 | 9 | 10 | 5 |
支持發展共享單車人數 | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在
的被調查人中隨機選取一人進行調查,求選中的3人中支持發展共享單車的人數為2人的概率.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天然氣是較為安全的燃氣之一,它不含一氧化碳,也比空氣輕,一旦泄露,立即會向上擴散,不易積累形成爆炸性氣體,安全性較高,其優點有:①綠色環保;②經濟實惠;③安全可靠;④改善生活. 某市政府為了節約居民天然氣,計劃在本市試行居民天然氣定額管理,即確定一個居民年用氣量的標準,為了確定一個較為合理的標準,必須先了解全市居民日常用氣量的分布情況,現采用抽樣調查的方式,獲得了位居民某年的用氣量(單位:立方米),樣本統計結果如下圖表.
(1)分布求出的值;
(2)若從樣本中年均用氣量在(單位:立方米)的5位居民中任選2人作進一步的調查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉村生態家園”建設,現擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設美麗鄉村生態公園,給村民休閑健身提供去處.點M,N分別在邊AB,AD上. (Ⅰ)當點M,N分別是邊AB,AD的中點時,求∠MCN的余弦值;
(Ⅱ)由于村建規劃及保護生態環境的需要,要求△AMN的周長為2千米,請探究∠MCN是否為定值,若是,求出此定值,若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com