精英家教網 > 高中數學 > 題目詳情

【題目】設橢圓 ()的一個焦點為橢圓內一點,若橢圓上存在一點,使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

【答案】A

【解析】

記橢圓的左焦點為, , , ,, 橢圓的離心率的取值范圍是,故選A.

【方法點晴】本題主要考查利用橢圓定與性質求橢圓的離心率,屬于難題.求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯系.求離心率范圍問題應先將 用有關的一些量表示出來,再利用其中的一些關系構造出關于的不等式,從而求出的范圍.本題是利用橢圓的定義以及三角形兩邊與第三邊的關系構造出關于的不等式,最后解出的范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校高二奧賽班N名學生的物理測評成績(滿分120分)分布直方圖如下,已知分數在100~110的學生數有21人。

(Ⅰ)求總人數N和分數在110~115分的人數n;

(Ⅱ)現準備從分數在110~115分的n名學生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學生的學習狀態,對其下一階段的學習提供指導性建議,對他前7次考試的數學成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。

數學

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數學成績x是線性相關的,若該生的數學成績達到130分,請你估計他的物理成績大約是多少?

附:對于一組數據其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某建筑公司打算在一處工地修建一座簡易儲物間.該儲物間室內地面呈矩形形狀,面積為,并且一面緊靠工地現有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號彩鋼板價格為100/米,整理地面及防雨布總費用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長度為.

1)用表示修建儲物間的總造價(單位:元);

2)如何設計該儲物間,可使總造價最低?最低總造價為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·全國Ⅱ卷)如圖,四棱錐PABCD中,側面PAD為等邊三角形且垂直于底面ABCD,ABBCAD,BADABC90°,EPD的中點.

(1)證明:直線CE∥平面PAB

(2)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的五面體中,四邊形為菱形,且中點.

(Ⅰ)求證: 平面;

(Ⅱ)若平面平面,求到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)與函數g(x)的圖像關于原點對稱,且f(x)= +2x, 若函數F(x)=g(x)-f(x)+1在區間上是增函數,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線與圓C相交,截得的弦長為.

1)求圓C的方程;

2)過原點O作圓C的兩條切線,與函數的圖象相交于M、N兩點(異于原點),證明:直線與圓C相切;

3)若函數圖象上任意三個不同的點P、QR,且滿足直線都與圓C相切,判斷線與圓C的位置關系,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,曲線在點處的切線為

)若直線的斜率為,求函數的單調區間.

)若函數是區間上的單調函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某少數民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數越多刺繡越漂亮,現按同樣的規律刺繡(小正方形的擺放規律相同),設第個圖形包含個小正方形.

(1)求出,,并猜測的表達式;

(2)求證:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视