【題目】選修4—4:坐標系與參數方程
在平面直角坐標系xOy 中,曲線C的參數方程為 (
是參數,0≤
≤π),以O 為極點,以x 軸的正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線C 的極坐標方程;
(Ⅱ)直線l1,的極坐標方程是2psin(θ+)+
=0,直線l2:θ =
與曲線C的交點為P,與直線l1的交點為Q,求線段PQ的長.
科目:高中數學 來源: 題型:
【題目】設點,動圓
經過點
且和直線
相切,記動圓的圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)設曲線上一點
的橫坐標為
,過
的直線交
于一點
,交
軸于點
,過點
作
的垂線交
于另一點
,若
是
的切線,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的左焦點是
,離心率為
,且
上任意一點
到
的最短距離為
.
(1)求的方程;
(2)過點的直線
(不過原點)與
交于兩點
、
,
為線段
的中點.
(i)證明:直線與
的斜率乘積為定值;
(ii)求面積的最大值及此時
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題:函數
的定義域為
;命題
:關于
的方程
有實根.
(1)如果是真命題,求實數
的取值范圍.
(2)如果命題“”為真命題,且“
”為假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓、拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,平面上四個點
,
,
,
中有兩個點在橢圓
上,另外兩個點在拋物線
上.
(1)求的標準方程;
(2)是否存在直線滿足以下條件:①過
的焦點
;②與
交于
兩點,且以
為直徑的圓經過原點
.若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(3)抽獎活動的規則是:代表通過操作按鍵使電腦自動產生兩個[0,1]之間的均勻隨機數x,y,并按如圖所示的程序框圖執行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現采用隨機模擬的方法估計一位射箭運動員三次射箭恰有兩次命中的概率:先由計算機隨機產生0到9之間取整數的隨機數,指定1,2,3,4,5表示命中,6,7,8,9,0表示不命中,再以三個隨機數為一組,代表三次射箭的結果,經隨機模擬產生了如下20組隨機數:
807 966 191 925 271 932 812 458 569 683
489 257 394 027 552 488 730 113 537 741
根據以上數據,估計該運動員三次射箭恰好有兩次命中的概率為
A. 0.20 B. 0.25 C. 0.30 D. 0.50
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一裝有水的直三棱柱容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側棱為10,側面
水平放置,如圖所示,點
,
,
,
分別在棱
,
,
,
上,水面恰好過點
,
,
,
,且
.
(1)證明: ;
(2)若底面水平放置時,求水面的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在游學活動中,在處參觀的第
組同學通知在
處參觀的第
組同學:第
組正離開
處向
的東南方向游玩,速度約為
米/分鐘.已知
在
的南偏西
方向且相距
米,第
組同學立即出發沿直線行進并用
分鐘與第
組同學匯合.
()設第
組同學行進的方位角為
,求
.
(方位角:從某點的指北方向線起,依順時針方向到目標方向線之間的水平夾角)
()求第
組同學的行進速度為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com