【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC
,則三棱錐P﹣ABC外接球的表面積為______.
科目:高中數學 來源: 題型:
【題目】已知橢圓,
,
,
,
四點中恰有三點在橢圓
上,拋物線
焦點到準線的距離為
.
(1)求橢圓、拋物線
的方程;
(2)過橢圓右頂點Q的直線
與拋物線
交于點A、B,射線
、
分別交橢圓
于點
、
.
(i)證明:為定值;
(ii)記、
的面積分別為
、
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
的焦點為
,直線
:
與拋物線
交于
,
兩點.
(1)若,求直線的方程;
(2)過點作直線
交拋物線
于
,
兩點,若線段
,
的中點分別為
,
,直線
與
軸的交點為
,求點
到直線
與
距離和的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小張舉辦了一次抽獎活動.顧客花費3元錢可獲得一次抽獎機會.每次抽獎時,顧客從裝有1個黑球,3個紅球和6個白球(除顏色外其他都相同)的不透明的袋子中依次不放回地摸出3個球,根據摸出的球的顏色情況進行兌獎.顧客中一等獎,二等獎,三等獎,四等獎時分別可領取的獎金為元,10元,5元,1元.若經營者小張將顧客摸出的3個球的顏色分成以下五種情況:
個黑球2個紅球;
個紅球;
恰有1個白球;
恰有2個白球;
個白球,且小張計劃將五種情況按發生的機會從小到大的順序分別對應中一等獎,中二等獎,中三等獎,中四等獎,不中獎.
(1)通過計算寫出中一至四等獎分別對應的情況(寫出字母即可);
(2)已知顧客摸出的第一個球是紅球,求他獲得二等獎的概率;
(3)設顧客抽一次獎小張獲利元,求變量
的分布列;若小張不打算在活動中虧本,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】楊輝三角,又稱帕斯卡三角,是二項式系數在三角形中的一種幾何排列,在我國南宋數學家楊輝所著的《評解九章算法》(年)一書中用如圖所示的三角形解釋二項式乘方展開式的系數規律,現把楊輝三角中的數從上到下,從左到右依次排列,得數列:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
…….記作數列
,若數列
的前
項和為
,則
=( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棱長為1的正方體內部有一圓柱
,此圓柱恰好以直線
為軸.有下列命題:
①圓柱的母線與正方體
所有的棱所成的角都相等;
②正方體所有的面與圓柱
的底面所成的角都相等;
③在正方體內作與圓柱
底面平行的截面,則截面的面積
;
④圓柱側面積的最大值為
.
其中正確的命題是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把方程表示的曲線作為函數
的圖象,則下列結論正確的是( )
①在R上單調遞減
②的圖像關于原點對稱
③的圖象上的點到坐標原點的距離的最小值為3
④函數不存在零點
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com