精英家教網 > 高中數學 > 題目詳情

【題目】棱長為1的正方體內部有一圓柱,此圓柱恰好以直線為軸.有下列命題:

①圓柱的母線與正方體所有的棱所成的角都相等;

②正方體所有的面與圓柱的底面所成的角都相等;

③在正方體內作與圓柱底面平行的截面,則截面的面積;

④圓柱側面積的最大值為.

其中正確的命題是______.

【答案】①②④

【解析】

根據正方體的特性分析可知①②正確,作出一個與圓柱底面平行的截面,舉出反例得到③錯誤,利用幾何法找出圓柱的底面半徑,列式計算圓柱側面積,結合均值不等式計算得到④正確,得到答案.

如圖所示:易知圓柱的母線與平行,由正方體的對稱性可知與其每條側棱間的夾角都相等,①正確;

分別為對應棱的中點,易知共面,

易證,,則平面,平面,故,同理可得,故平面

又圓柱的底面與垂直,

故平面與圓柱的底面平行,

根據正方體的特點可知,平面與正方體所有側面的夾角相同,

故正方體所有的面與圓柱的底面所成的角都相等,②正確;

此時截面的面積為,③錯誤;

設圓柱底面半徑為,則圓柱的底面必與過點的三個面相切,

且切點分別在線段上,設在上的切點為,為圓柱的一條高,

根據對稱性知:,則圓柱的高為

,

,即時等號成立,④正確.

故答案為:①②④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線,過點的直線交拋物線于,,兩點.垂直于軸時,的面積為.

0

1)求拋物線的方程:

2)設線段的垂直平分線交軸于點.

①證明:為定值:

②若,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的普通方程為,以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(I)求的參數方程與的直角坐標方程;

(II)射線交于異于極點的點,與的交點為,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A是以BC為直徑的圓O上異于BC的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC,則三棱錐PABC外接球的表面積為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4―4:坐標系與參數方程]

在直角坐標系xOy中,曲線C的參數方程為θ為參數),直線l的參數方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可吸入肺顆粒物.我國標準采用世衛組織設定的最寬限值,即日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米微克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標,某試點城市環保局從該市市區2019年上半年每天的監測數據中隨機的抽取15天的數據作為樣本,監測值如下莖葉圖所示(十位為莖,個位為葉).

1)在這15天的日均監測數據中,求其中位數;

2)從這15天的數據中任取2天數據,記表示抽到監測數據超標的天數,求的分布列及數學期望;

3)以這15天的日均值來估計該市下一年的空氣質量情況,則一年(按365天計算)中平均有多少天的空氣質量達到一級或二級.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且

1)若為等差數列,且

①求該等差數列的公差

②設數列滿足,則當為何值時,最大?請說明理由;

2)若還同時滿足:

為等比數列;

③對任意的正整數存在自然數,使得、、依次成等差數列,試求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年春節期間,我國高速公路繼續執行節假日高速公路免費政策某路橋公司為掌握春節期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數,統計發現這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區間9:40~10:00記作,10:00~10:20記作10:20~10:40記作.例如:1004分,記作時刻64.

1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數據用該組區間的中點值代表);

2)為了對數據進行分析,現采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設抽到的4輛車中,在9:20~10:00之間通過的車輛數為X,求X的分布列與數學期望;

3)由大數據分析可知,車輛在每天通過該收費點的時刻T服從正態分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數據用該組區間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(結果保留到整數).

參考數據:若,則,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標中,圓,圓。

()在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓的極坐標方程,并求出圓的交點坐標(用極坐標表示);

()求圓的公共弦的參數方程。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视