【題目】閱讀如圖的程序框圖,運行相應的程序,則輸出n的值為( )
A.6
B.8
C.10
D.12
科目:高中數學 來源: 題型:
【題目】集合M的若干個子集的集合稱為集合M的一個子集族.對于集合{1,2,3…n}的一個子集族D滿足如下條件:若A∈D,BA,則B∈D,則稱子集族D是“向下封閉”的. (Ⅰ)寫出一個含有集合{1,2}的“向下封閉”的子集族D并計算此時 的值(其中|A|表示集合A中元素的個數,約定||=0;
表示對子集族D中所有成員A求和);
(Ⅱ)D是集合{1,2,3…n}的任一“向下封閉的”子集族,對A∈D,記k=max|A|, (其中max表示最大值),
(。┣骹(2);
(ⅱ)若k是偶數,求f(k).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,四邊形ABEF為直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2. (Ⅰ)求證:AC∥平面DEF;
(Ⅱ)若二面角D﹣AB﹣E為直二面角,
( i)求直線AC與平面CDE所成角的大;
( ii)棱DE上是否存在點P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an},其前n項和Sn=﹣3n2 , {bn}為單調遞增的等比數列,b1b2b3=512,a1+b1=a3+b3 .
(1)求數列{an},{bn}的通項;
(2)若cn= ,數列{cn}的前n項和Tn , 求證:
<1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若a=e2 , 當x∈(0,e]時,求函數f(x)的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com