【題目】已知函數,
(1) 判斷的奇偶性并證明;
(2) 令
①判斷在
的單調性(不必說明理由);
②是否存在,使得
在區間
的值域為
?若存在,求出此時
的取值范圍;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環的概率如表所示:
命中環數 | 10環 | 9環 | 8環 | 7環 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環或10環的概率;
(2)至少命中8環的概率;(3)命中不足8環的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數為定義在
上的奇函數,且當
時,
.
(1)求函數的解析式;
(2)求實數,使得函數
在區間
上的值域為
;
(3)若函數在區間
上的值域為
,則記所有滿足條件的區間
的并集為
,設
,問是否存在實數
,使得集合
恰含有
個元素?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國經濟的飛速發展,人們的生活水平也同步上升,許許多多的家庭對于資金的管理都有不同的方式。最新調查表明,人們對于投資理財的興趣逐步提高。某投資理財公司做了大量的數據調查,調查顯示兩種產品投資收益如下:
①投資產品的收益與投資額的算術平方根成正比;
②投資產品的收益與投資額成正比.
公司提供了投資1萬元時兩種產品的收益,分別是0.4萬元和0.2萬元。
(1) 分別求出產品的收益
、
產品的收益
與投資額
的函數關系式;
(2) 假如現在你有10萬元的資金全部用于投資理財,你該如何分配資金,才能讓你的收益最大?最大收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
.
(1)若分別表示將一枚質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6),先后拋擲兩次時第一次、第二次出現的點數,求滿足
的概率;
(2)若在連續區間
上取值,求滿足
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:
項目 | 男性 | 女性 | 總計 |
反感 | 10 | ||
不反感 | 8 | ||
總計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯表補充完整(直接寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路”與性別是否有關?
(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數;
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com