【題目】如圖,在半徑為2,圓心角為 的扇形金屬材料中剪出一個四邊形MNQP,其中M、N兩點分別在半徑OA、OB上,P、Q兩點在弧
上,且OM=ON,MN∥PQ.
(1)若M、N分別是OA、OB中點,求四邊形MNQP面積的最大值.
(2)PQ=2,求四邊形MNQP面積的最大值.
【答案】
(1)解:連接OP,OQ,則四邊形MNQP為梯形.
設∠AOP=∠BOQ=θ∈(0, ),則∠POQ=
﹣2θ,且此時OM=ON=1,
四邊形MNQP面積S= sinθ+
sinθ+
×2sin(
﹣2θ)﹣
=﹣4sin2θ+2sinθ+
,
∴sinθ= ,S取最大值
(2)解:設OM=ON=x∈(0,2),
由PQ=2可知∠POQ= ,∠AOQ=∠BOP=
,
∴sin =
,
∴四邊形MNQP面積S= x+
x+
﹣
x2=﹣
x2+
x+
,
∴x= ,S取最大值為
【解析】(1)設∠AOP=∠BOQ=θ∈(0, ),則∠POQ=
﹣2θ,且此時OM=ON=1,利用分割法,即可求四邊形MNQP面積的最大值.(2)PQ=2,可知∠POQ=
,∠AOQ=∠BOP=
,利用分割法,即可求四邊形MNQP面積的最大值.
【考點精析】本題主要考查了三角函數的最值的相關知識點,需要掌握函數,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】設{an}是各項都為正數的等比數列,{bn}是等差數列,且a1=b1=1,a3+b5=13,a5+b3=21.
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)設數列{an}的前n項和為Sn , 求數列{Snbn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設點
(1,0),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 異于點R的點Q滿足:
,
.
(1)求動點的軌跡的方程;
(2) 記的軌跡的方程為
,過點
作兩條互相垂直的曲線
的弦.
,設
.
的中點分別為
.
問直線是否經過某個定點?如果是,求出該定點,
如果不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:2ax+y﹣1=0,l2:ax+(a﹣1)y+1=0,
(1)若l1⊥l2 , 求實數a的值;
(2)若l1∥l2時,求直線l1與l2之間的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
極坐標系中, 為極點,半徑為2的圓
的圓心坐標為
.
(1)求圓的極坐標方程;
(2)設直角坐標系的原點與極點重合,
軸非負關軸與極軸重合,直線
的參數方程為
(
為參數),由直線
上的點向圓
引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求數列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com