【題目】已知函數f(x)= cos4x+2sinxcosx﹣
sin4x.
(1)當x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0,
],都存在x2∈[0,
],使得f(x1)=g(x2)成立,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】春節是旅游消費旺季,某大型商場通過對春節前后20天的調查,得到部分日經濟收入Q與這20天中的第x天(x∈N+)的部分數據如表:
天數x(天) | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
日經濟收入Q(萬元) | 154 | 180 | 198 | 208 | 210 | 204 | 190 |
(1)根據表中數據,結合函數圖象的性質,從下列函數模型中選取一個最恰當的函數模型描述Q與x的變化關系,只需說明理由,不用證明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)結合表中的數據,根據你選擇的函數模型,求出該函數的解析式,并確定日經濟收入最高的是第幾天;并求出這個最高值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(I)若A,B兩點的縱會標分別為 的值;
(II)已知點C是單位圓上的一點,且 的夾角θ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,F1、F2是雙曲線 =1(a>0,b>0)的左、右焦點,過F1的直線l與雙曲線的左右兩支分別交于點A、B.若△ABF2為等邊三角形,則雙曲線的離心率為( )
A.4
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1、F2是橢圓 +
=1的左、右焦點,O為坐標原點,點P(﹣1,
)在橢圓上,線段PF2與y軸的交點M滿足
+
=
;
(1)求橢圓的標準方程;
(2)⊙O是以F1F2為直徑的圓,一直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點A、B.當 =λ且滿足
≤λ≤
時,求△AOB面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為R,若存在常數T≠0,使得f(x)=Tf(x+T)對任意的x∈R成立,則稱函數f(x)是Ω函數. (Ⅰ)判斷函數f(x)=x,g(x)=sinπx是否是Ω函數;(只需寫出結論)
(Ⅱ)說明:請在(i)、(ii)問中選擇一問解答即可,兩問都作答的按選擇(i)計分
(i)求證:若函數f(x)是Ω函數,且f(x)是偶函數,則f(x)是周期函數;
(ii)求證:若函數f(x)是Ω函數,且f(x)是奇函數,則f(x)是周期函數;
(Ⅲ)求證:當a>1時,函數f(x)=ax一定是Ω函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com