【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.
【答案】
(1)證明:∵AD∥EF,EF∥BC,∴AD∥BC,
∵BC=2AD,G為BC的中點,∴AD∥BG,且AD=BG,∴四邊形ABCD是平行四邊形,∴AB∥DG
因為AB不在平面DEG中,DG在平面DEG內,∴AB∥平面DEG
(2)證明:∵EF⊥平面AEB,AE平面AEB,BE平面AEB,
∴EF⊥AE,EF⊥BE,∵AE⊥EB,∴EB、EF、EA兩兩垂直.
以點E為坐標原點,EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標系,
由已知得:A(0,0,2),B(2,0,0),C(2,4,0),D(0,2,2),F(0,3,0),G(2,2,0).
∵ ,∴
∴BD⊥EG
(3)解:由已知得 是平面EFDA的法向量,設平面DCF的法向量為
∵ ,∴
,令z=1,得x=﹣1,y=2,即
.
設二面角C﹣DF﹣E的大小為θ,
則 ,∴
∴二面角C﹣DF﹣E的正弦值為 .
【解析】(1)要證AB∥平面DEG,可在平面DEG中找到一條直線與AB平行,根據題目給出的條件,能夠證得AB∥DG;(2)根據題目條件先證明EB、EA、EF兩兩相互垂直,然后以E為原點,以EB、EF、EA所在直線分別為x、y、z軸建立空間直角坐標系,運用向量數量積等于0 ,從而證明BD⊥EG;(3)在(2)的基礎上,求出二面角的兩個半平面的法向量,利用法向量求二面角的平面角的余弦值.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的性質的理解,了解垂直于同一個平面的兩條直線平行.
科目:高中數學 來源: 題型:
【題目】函數y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣
)
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設Ox、Oy是平面內相交成45°角的兩條數軸, 、
分別是x軸、y軸正方向同向的單位向量,若向量
=x
+y
,則把有序數對(x,y)叫做向量
在坐標系xOy中的坐標,在此坐標系下,假設
=(﹣2,2
),
=(2,0),
=(5,﹣3
),則下列命題不正確的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= cos4x+2sinxcosx﹣
sin4x.
(1)當x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0,
],都存在x2∈[0,
],使得f(x1)=g(x2)成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:數列{an}前n項的乘積Tn=a1a2…an , 數列an=29﹣n , 則下面的等式中正確的是( )
A.T1=T19
B.T3=T17
C.T5=T12
D.T8=T11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:函數f(x)=lg(ax2﹣x+ )的值域為R;命題q:3x﹣9x<a對一切實數x恒成立,如果命題“p且q”為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知如表為“五點法”繪制函數f(x)=Asin(ωx+φ)圖象時的五個關鍵點的坐標(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請寫出函數f(x)的最小正周期和解析式;
(Ⅱ)求函數f(x)的單調遞減區間;
(Ⅲ)求函數f(x)在區間[0, ]上的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com