【題目】如圖,F1、F2是雙曲線 =1(a>0,b>0)的左、右焦點,過F1的直線l與雙曲線的左右兩支分別交于點A、B.若△ABF2為等邊三角形,則雙曲線的離心率為( )
A.4
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=3x , g(x)=|x+a|﹣3,其中a∈R. (Ⅰ)若函數h(x)=f[g(x)]的圖象關于直線x=2對稱,求a的值;
(Ⅱ)給出函數y=g[f(x)]的零點個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= cos4x+2sinxcosx﹣
sin4x.
(1)當x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0,
],都存在x2∈[0,
],使得f(x1)=g(x2)成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F與橢圓C的一個焦點重合,且拋物線的準線與橢圓C相交于點 .
(1)求拋物線的方程;
(2)過點F是否存在直線l與橢圓C交于M,N兩點,且以MN為對角線的正方形的第三個頂點恰在y軸上?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:函數f(x)=lg(ax2﹣x+ )的值域為R;命題q:3x﹣9x<a對一切實數x恒成立,如果命題“p且q”為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4tanxsin( ﹣x)cos(x﹣
)﹣
.
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區間[﹣ ,
]上的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=x|x﹣a|.
(1)當a=0時,寫出函數y=f(x)的單調遞增區間;
(2)當a=1時,討論函數y=f(x)的奇偶性;
(3)設a≠0,函數y=f(x)在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com