【題目】已知二次函數f(x)的二次項系數為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實根,求f(x)的解析式.
【答案】解:設f(x)=ax2+bx+c,由f(x)>﹣x,可得ax2+(b+1)x+c>0,∵f(x)>﹣x的解集為{x|1<x<2},
∴ ,解得
,
∴f(x)=ax2﹣(3a+1)x+2a.
∵f(x)+2a=0,即ax2﹣(3a+1)x+4a=0有兩相等實根,
∴△=(3a+1)2﹣16a2=0,解得a=1舍去或 .④
由①②③④得: ,
,
.
∴
【解析】設f(x)=ax2+bx+c,由f(x)>﹣x,可得ax2+(b+1)x+c>0,由f(x)>﹣x的解集為{x|1<x<2},列出不等式組,求解即可得a,b,c的關系式,再由f(x)+2a=0求出a的值,結合a,b,c的關系式即可得答案.
【考點精析】掌握函數的定義域及其求法是解答本題的根本,需要知道求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②
是分式函數時,定義域是使分母不為零的一切實數;③
是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.
科目:高中數學 來源: 題型:
【題目】(Ⅰ)平面直角坐標系中,傾斜角為
的直線
過點
,以原點
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的參數方程(
為常數)和曲線
的直角坐標方程;
(2)若直線與
交于
、
兩點,且
,求傾斜角
的值.
(Ⅱ)已知函數.
(1)若函數的最小值為5,求實數
的值;
(2)求使得不等式成立的實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知在平面直角坐標系中,曲線的參數方程是
(
為參數),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(Ⅰ) 求曲線與
交點的平面直角坐標;
(Ⅱ) 點分別在曲線
,
上,當
最大時,求
的面積(
為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數:R(x)= ,其中x是儀器的月產量.(注:總收益=總成本+利潤)
(1)將利潤x表示為月產量x的函數;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
是邊長為2的菱形,
,四邊形
是矩形,平面
平面
.
(1)在圖中畫出過點的平面
,使得
平面
(必須說明畫法,不需證明);
(2)若二面角是
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的鋼板的邊界是拋物線的一部分,且
垂直于拋物線對稱軸,現欲從鋼板上截取一塊以
為下底邊的等腰梯形鋼板
,其中
均在拋物線弧上.設
(米),且
.
(1)當時,求等腰梯形鋼板的面積;
(2)當為何值時,等腰梯形鋼板的面積最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一次函數f(x)是R上的增函數,已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)單調遞增,求實數m的取值范圍;
(3)當x∈[﹣1,3]時,g(x)有最大值13,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于任意實數x,[x]表示不超過x的最大整數,如[1.1]=1,[﹣2.1]=﹣3.定義在R上的函數f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是偶函數,定義x≥0時,f(x)=
(1)求f(﹣2);
(2)當x<﹣3時,求f(x)的解析式;
(3)設函數y=f(x)在區間[﹣5,5]上的最大值為g(a),試求g(a)的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com