精英家教網 > 高中數學 > 題目詳情

【題目】四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥平面ABCD,EF分別為線段AB,BC的中點.

1)線段AP上一點M,滿足,求證:EM∥平面PDF

2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

【答案】(1)見解析(2)

【解析】

1)建立空間直角坐標系,利用·=0,即可證明EM∥平面PDF;

2)求出平面PDF和平面PAD的一個法向量,利用向量的夾角公式,即可求解二面角的余弦值.

1)由題意,以A為原點,ABx軸,ADy軸,APz軸,建立空間直角坐標系,

PA=a,則A0,0,0),M00,),P0,0a),F2,10),D02,0),

E1,0,0),所以=-1,0,),=21,-a),=0,2,-a),

設平面PDF的法向量=x,yz),

,取z=2,得=,a2),

·=-+2×=0,EM平面PDF∴EM∥平面PDF

2)因為PB與平面ABCD所成的角為45°,可得PA=AB=2,

所以P00,2),D0,20),F21,0),

所以=0,2,-2),=2,10),

設平面PDF的法向量為=xy,z),

,取y=1,得=,1,1),

又由平面PAD的法向量=1,00),

設二面角A-PD-F的平面角為θ,則,

∴二面角A-PD-F的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)時,求函數的單調遞增區間;

(2)設的內角的對應邊分別為,且,若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動次數為1,2,3的人數分別為33, 4,現從這10人中隨機選出2人作為該組代表參加座談會.

1)記“選出2人外出參加交流活動次數之和為4”為事件A,求事件A發生的概率;

2)設X為選出2人參加交流活動次數之差的絕對值,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調查一線城市和非一線城市的二孩生育意愿,某機構用簡單隨機抽樣方法從不同地區調查了100位育齡婦女,結果如下表.

非一線城市

一線城市

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

算得,,

參照附表,得到的正確結論是

A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關”

B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關”

C. 有99%以上的把握認為“生育意愿與城市級別有關”

D. 有99%以上的把握認為“生育意愿與城市級別無關”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a=(sinx,cosx),b=(sinx,sinx),f(x)=2a·b.

(1)求f(x)的最小正周期和最大值;

(2)若g(x)=f(x),x,畫出函數yg(x)的圖象,討論yg(x)-m(m∈R)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了適應高考改革,某中學推行“創新課堂”教學.高一平行甲班采用“傳統教學”的教學方式授課,高一平行乙班采用“創新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統計分析,結果如下表:(記成績不低于分者為“成績優秀”)

分數

甲班頻數

乙班頻數

(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷是否有以上的把握認為“成績優秀與教學方式有關”?

甲班

乙班

總計

成績優秀

成績不優秀

總計

(Ⅱ)現從上述樣本“成績不優秀”的學生中,抽取人進行考核,記“成績不優秀”的乙班人數為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出以下四個說法:

①殘差點分布的帶狀區域的寬度越窄相關指數越小

②在刻畫回歸模型的擬合效果時,相關指數的值越大,說明擬合的效果越好;

③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均增加個單位;

④對分類變量,若它們的隨機變量的觀測值越小,則判斷“有關系”的把握程度越大.

其中正確的說法是

A. ①④B. ②④C. ①③D. ②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】CPI是居民消費價格指數(consumer price index)的簡稱.居民消費價格指數,是一個反映居民家庭一般所購買的消費品價格水平變動情況的宏觀經濟指標.右圖是根據統計局發布的2018年1月—7月的CPI 同比增長與環比增長漲跌幅數據繪制的折線圖.(注:2018 年2月與2017年2月相比較,叫同比;2018年2 月與2018年1月相比較,叫環比)根據該折線圖,則下列結論錯誤的是( )

A. 2018年1月—7月CPI 有漲有跌

B. 2018年2月—7月CPI 漲跌波動不大,變化比較平穩

C. 2018年1月—7月分別與2017年1月一7月相比較,1月CPI 漲幅最大

D. 2018年1月—7月分別與2017年1月一7月相比較,CPI 有漲有跌

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過點P(3,4)

(1)它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.

(2)若直線l軸,軸的正半軸分別交于點,求的面積的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视